Pérez-Bueno María Luisa, Illescas-Miranda Jonatan, Martín-Forero Amanda F, de Marcos Alberto, Barón Matilde, Fenoll Carmen, Mena Montaña
Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain.
Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain.
Front Plant Sci. 2022 Jul 22;13:919299. doi: 10.3389/fpls.2022.919299. eCollection 2022.
The impact of global warming on transpiration and photosynthesis would compromise plant fitness, impacting on crop yields and ecosystem functioning. In this frame, we explored the performance of a set of Arabidopsis mutants carrying partial or total loss-of-function alleles of stomatal development genes and displaying distinct stomatal abundances. Using microscopy and non-invasive imaging techniques on this genotype collection, we examined anatomical leaf and stomatal traits, plant growth and development, and physiological performance at optimal (22°C) and supra-optimal (30°C) temperatures. All genotypes showed thermomorphogenetic responses but no signs of heat stress. Data analysis singled out an extremely low stomatal abundance mutant, . At 22°C, had lower transpiration and warmer leaves than the wild type. However, at 30°C, this mutant developed larger stomata and thinner leaves, paralleled by a notable cooling capacity, similar to that of the wild type. Despite their low stomatal density (SD), plants grown at 30°C showed no photosynthesis or growth penalties. The behavior of at supra-optimal temperature exemplifies how the effect of very low stomatal numbers can be counteracted by a combination of larger stomata and thinner leaves. Furthermore, it provides a novel strategy for coping with high growth temperatures.
全球变暖对蒸腾作用和光合作用的影响会损害植物健康,进而影响作物产量和生态系统功能。在此背景下,我们探究了一组拟南芥突变体的表现,这些突变体携带气孔发育基因的部分或完全功能丧失等位基因,并表现出不同的气孔丰度。利用显微镜和非侵入性成像技术对该基因型集合进行研究,我们在最佳温度(22°C)和超最佳温度(30°C)下检测了叶片解剖结构和气孔特征、植物生长发育以及生理性能。所有基因型均表现出热形态发生反应,但没有热应激迹象。数据分析筛选出一个气孔丰度极低的突变体。在22°C时,该突变体的蒸腾作用低于野生型,叶片温度更高。然而,在30°C时,该突变体的气孔更大,叶片更薄,同时具有显著的降温能力,与野生型相似。尽管其气孔密度(SD)较低,但在30°C下生长的该突变体植株未表现出光合作用或生长受影响。该突变体在超最佳温度下的表现例证了极低气孔数量的影响如何通过较大气孔和较薄叶片的组合得到抵消。此外,它还提供了一种应对高生长温度的新策略。