Suppr超能文献

通过在健康老龄化和高负担疾病队列中采用识别和深度表型分析方法预防衰弱的骨质疏松性肌少症和多重疾病研究(OPTIMA-C):一项关于神经肌肉骨骼肌肉健康的纵向观察性队列研究方案

Targeting osteosarcopenia and multimorbidity for frailty prevention through identification and deep phenotyping methods in healthy ageing and high-burden disease cohorts (OPTIMA-C): a longitudinal observational cohort study protocol for neuromusculoskeletal muscle health.

作者信息

Tay Matthew Rong Jie, Kim Jong Moon, Ong Poo Lee, Khin Lay Wai, Wong Chin Jung, Kong Keng He, Tan Bryan Yijia, Lee Eng Sing, Sim Sai Zhen, Lim Wee Shiong, Yam Michael Gui Jie, Chew Justin Linghui, Tan Alvin Wai Kit, Sidarta Ananda, Yee Emily, Chua Karen Sui Geok

机构信息

Institute of Rehabilitation Excellence, Tan Tock Seng Hospital Rehabilitation Centre, Tan Tock Seng Hospital, Singapore

Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.

出版信息

BMJ Open. 2025 May 23;15(5):e094279. doi: 10.1136/bmjopen-2024-094279.

Abstract

INTRODUCTION

Sarcopenia and frailty have been identified as negative predictors of health outcomes. Patients with stroke, traumatic brain injury (TBI), knee osteoarthritis (OA) and breast cancer commonly experience low physical activity levels in the chronic phase of recovery. This prospective study aims to explore the feasibility of multimodal screening and longitudinal tracking of various biomarkers from the acute to chronic phase of disease to determine the relationship with frailty outcomes.

METHODS AND ANALYSIS

A prospective longitudinal observational cohort study involving Asian populations is planned over 3 years. Enrolled participants with index conditions of acute stroke, TBI, knee OA and breast cancer will be recruited from rehabilitation hospitals and clinics and followed longitudinally. Reference thresholds from the Asian Working Group on Sarcopenia will be used. Variables include self-reported questionnaires, disease and comorbidity characteristics, anthropometric measurements, appetite questionnaires, muscle ultrasound (MUS), muscle/bone mass, blood biomarkers and markerless gait motion systems. In particular, physical performance (short physical performance battery and hand grip strength), sarcopenia (SARC-F questionnaire) and frailty assessment (FRAIL score, clinical frailty scale), four-region MUS, body composition analysis, dual X-ray absorptiometry, bone mineral densitometry, physical activity levels (International Physical Activity Questionnaire for the elderly [IPAQ-E], fitness trackers) and health-related quality of life assessment (EuroQoL-5D questionnaire five level [EQ5D-5L]) will be used. Blood biomarkers measuring metabolic health (eg, glycated haemoglobin, cholesterol, fasting glucose and 25-OH vitamin D) and inflammation (eg, Tumor Necrosis Factor-alpha [TNF-α] and Monocyte Chemoattractant Protein-1 [MCP-1]) will be measured at baseline. Data collection will take place at postrecruitment baseline (hospital admission), 1, 6 months, 12 months and 2 years postrecruitment (inpatient) and at postrecruitment baseline, 6 months, 12 months and 2 years postrecruitment (outpatient).

ETHICS AND DISSEMINATION

Ethical approval has been obtained from the National Healthcare Group Domain Specific Review Board (2023/00105). Findings will be disseminated through conference presentations and publication in scientific journals.

TRIAL REGISTERATION NUMBER

NCT06073106.

摘要

引言

肌肉减少症和衰弱已被确定为健康结果的负面预测因素。中风、创伤性脑损伤(TBI)、膝关节骨关节炎(OA)和乳腺癌患者在恢复的慢性阶段通常身体活动水平较低。这项前瞻性研究旨在探讨从疾病的急性期到慢性期对各种生物标志物进行多模式筛查和纵向跟踪的可行性,以确定其与衰弱结果的关系。

方法与分析

计划开展一项为期3年的涉及亚洲人群的前瞻性纵向观察队列研究。将从康复医院和诊所招募患有急性中风、TBI、膝关节OA和乳腺癌等索引疾病的参与者,并进行纵向随访。将采用亚洲肌肉减少症工作组的参考阈值。变量包括自我报告问卷、疾病和合并症特征、人体测量、食欲问卷、肌肉超声(MUS)、肌肉/骨量、血液生物标志物和无标记步态运动系统。特别地,将使用身体性能(简短身体性能测试和握力)、肌肉减少症(SARC-F问卷)和衰弱评估(FRAIL评分、临床衰弱量表)、四区MUS、身体成分分析、双能X线吸收法、骨密度测定、身体活动水平(老年人国际身体活动问卷[IPAQ-E]、健身追踪器)以及健康相关生活质量评估(欧洲五维健康量表五级[EQ5D-5L])。在基线时将测量用于评估代谢健康的血液生物标志物(如糖化血红蛋白、胆固醇、空腹血糖和25-羟基维生素D)以及炎症相关的生物标志物(如肿瘤坏死因子-α[TNF-α]和单核细胞趋化蛋白-1[MCP-1])。数据收集将在招募后基线(入院时)、招募后1个月、6个月、12个月和2年(住院患者)以及招募后基线、招募后6个月、12个月和2年(门诊患者)进行。

伦理与传播

已获得国家医疗集团特定领域审查委员会的伦理批准(2023/00105)。研究结果将通过会议报告和在科学期刊上发表进行传播。

试验注册号

NCT06073106。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验