Suppr超能文献

用于零间隙阴离子交换膜水电解槽的先进镍基气体扩散阳极

Advanced Nickel-Based Gas Diffusion Anode for Zero-Gap Anion-Exchange Membrane Water Electrolyzers.

作者信息

Pushkareva Irina V, Wu Zhixing, Liu Xianjie, Solovyev Maksim A, Butrim Sergey I, Kozlova Margarita V, Kulova Tatiana L, Crispin Reverant, Björk Emma M, Bessarabov Dmitri G, Vagin Mikhail, Pushkarev Artem S

机构信息

HySA Infrastructure Center of Competence, Faculty of Engineering, North-West University, Private Bag X6001, Potchefstroom Campus, 2531 Potchefstroom, South Africa.

Laboratory of Organic Electronics, Department of Science and Technology (ITN), Linköping University, 60174 Norrköping, Sweden.

出版信息

ACS Appl Mater Interfaces. 2025 Jun 4;17(22):32216-32227. doi: 10.1021/acsami.5c01272. Epub 2025 May 23.

Abstract

Electrolytic hydrogen production using abundant water and renewable electricity is a key step toward achieving a carbon-neutral economy. Anion-exchange membrane water electrolyzers (AEMWE) present an opportunity to enhance sustainability and reduce the costs of green hydrogen technology. This study focuses on reducing electrical losses in the AEMWE by designing an improved anode catalyst layer. The approach involves modifying nickel foam by using a microporous nickel ink. This modification not only smooths the nickel foam to prevent membrane punctures during compression assembly but also enhances the utilization of the mesoporous NiO (mesoNiO) catalyst in the anode process, namely, the oxygen evolution reaction (OER). The anode leverages a mechanism where both the mesoNiO catalyst and the nickel powder layer participate in the OER, hosting a NiOOH intermediate formed through surface oxidation. By optimization of the mass loading, the design achieves a balance between smooth membrane-electrode contact, reduced kinetic losses during the OER, and efficient ionic transport. As a result, the optimized AEMWE reaches a competitive current density of 2.6 A cm at a cell voltage of 2 V, comparable to the performance of state-of-the-art proton-exchange membrane water electrolyzers. These findings highlight that fluorocarbon membrane-free, zero-gap water electrolyzers with platinum-free anodes can deliver significant advancements in green hydrogen technology. This promising performance encourages further research toward catalyst-free water electrolyzers as the next step in sustainable hydrogen production.

摘要

利用丰富的水资源和可再生电力进行电解制氢是实现碳中和经济的关键一步。阴离子交换膜水电解槽(AEMWE)为提高可持续性和降低绿色氢能技术成本提供了契机。本研究聚焦于通过设计改进的阳极催化剂层来降低AEMWE中的电损耗。该方法包括使用微孔镍油墨对泡沫镍进行改性。这种改性不仅使泡沫镍表面光滑,以防止在压缩组装过程中膜被刺穿,还提高了阳极过程中中孔NiO(mesoNiO)催化剂在析氧反应(OER)中的利用率。阳极利用了一种机制,即mesoNiO催化剂和镍粉层都参与OER,承载通过表面氧化形成的NiOOH中间体。通过优化质量负载,该设计在膜电极的平滑接触、OER过程中降低的动力学损耗和高效的离子传输之间实现了平衡。结果,优化后的AEMWE在2 V的电池电压下达到了具有竞争力的2.6 A cm的电流密度,与最先进的质子交换膜水电解槽的性能相当。这些发现突出表明,无氟碳膜、无间隙且阳极无铂的水电解槽能够在绿色氢能技术方面取得重大进展。这种有前景的性能鼓励进一步研究无催化剂水电解槽,作为可持续制氢的下一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c03/12147071/327805a10a7b/am5c01272_0007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验