Son Gamsong, Song Jiyoung, Park Jae Chul, Kim Hong Nam, Kim Hojun
Division of Bio-Medical Science &Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea.
Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
Nat Commun. 2025 May 23;16(1):4799. doi: 10.1038/s41467-025-59489-5.
Exosomes, as cell-derived lipid nanoparticles, are promising drug carriers because they can traverse challenging physiological barriers such as the blood-brain barrier (BBB). However, a major obstacle in utilizing exosomes as drug carriers is loading large therapeutic molecules without compromising the structural integrity of embedded biomolecules. Here, we introduce a membrane fusion method utilizing fusogenic lipid nanoparticles, cubosomes, to load large molecules into exosomes in a non-destructive manner. When the drug-loaded cubosome and exosome solutions are simply mixed, membrane fusion is completed in just 10 min. Our method effectively loads doxorubicin and immunoglobulin G into exosomes. Moreover, even the most challenging molecule-mRNA-is loaded with nearly 100% efficiency, demonstrating the versatility of our approach. In terms of biological behavior, the resulting hybrid exosomes preserve the functional behavior of exosomes in BBB uptake and penetration. Surprisingly, controlling exosome-to-cubosome ratios allows precise control over BBB uptake and transport. Furthermore, these hybrid exosomes retain cell-specific delivery properties, preserving the targeted delivery functions dictated by their exosomal origin. This study demonstrates the feasibility of a mix-and-load method for rapid and efficient drug loading into exosomes, with significant potential for the treatment of neurological diseases.
外泌体作为细胞来源的脂质纳米颗粒,是很有前景的药物载体,因为它们能够穿越诸如血脑屏障(BBB)等具有挑战性的生理屏障。然而,将外泌体用作药物载体的一个主要障碍是在不损害嵌入生物分子结构完整性的情况下装载大分子治疗药物。在此,我们介绍一种利用融合脂质纳米颗粒(立方液晶纳米粒)的膜融合方法,以无损方式将大分子装载到外泌体中。当简单混合载药立方液晶纳米粒溶液和外泌体溶液时,膜融合在仅10分钟内即可完成。我们的方法能有效地将阿霉素和免疫球蛋白G装载到外泌体中。此外,即使是最具挑战性的分子——信使核糖核酸(mRNA)——也能以近100%的效率装载,这证明了我们方法的通用性。在生物学行为方面,所得的杂交外泌体在血脑屏障摄取和穿透方面保留了外泌体的功能行为。令人惊讶的是,控制外泌体与立方液晶纳米粒的比例可精确控制血脑屏障的摄取和运输。此外,这些杂交外泌体保留了细胞特异性递送特性,保持了由其外泌体来源所决定的靶向递送功能。本研究证明了一种快速高效地将药物装载到外泌体中的混合装载方法的可行性,在治疗神经疾病方面具有巨大潜力。