Pelluet C, Arguel R, Rabault M, Jarlaud V, Métayer C, Barrett B, Bouyer P, Battelier B
LP2N, Laboratoire Photonique Numérique et Nanosciences, Université de Bordeaux, IOGS and CNRS, Talence, France.
CNES, Centre National d'Etudes Spatiales, Toulouse, France.
Nat Commun. 2025 May 23;16(1):4812. doi: 10.1038/s41467-025-60042-7.
Recent advances in atom interferometry have led to the development of quantum inertial sensors with outstanding performance in terms of sensitivity, accuracy, and long-term stability. For ground-based implementations, these sensors are ultimately limited by the free-fall height of atomic fountains required to interrogate the atoms over extended timescales. This limitation can be overcome in Space and in unique "microgravity" facilities such as drop towers or free-falling aircraft. These facilities require large investments, long development times, and place stringent constraints on instruments that further limit their widespread use. In this work, we present a new approach in which atom interferometry is performed in a laboratory-scale Einstein Elevator. We demonstrate an acceleration sensitivity of 6 × 10 m/s per shot, with a total interrogation time of 2T = 200 ms. We further demonstrate the capability to perform long-term statistical studies by operating the Einstein Elevator over several days with high reproducibility.
原子干涉测量技术的最新进展推动了量子惯性传感器的发展,这些传感器在灵敏度、精度和长期稳定性方面表现出色。对于地面应用,这些传感器最终受到在较长时间尺度上询问原子所需的原子喷泉自由落体高度的限制。在太空以及诸如落塔或自由落体飞机等独特的“微重力”设施中可以克服这一限制。这些设施需要大量投资、较长的开发时间,并且对仪器有严格的限制,这进一步限制了它们的广泛使用。在这项工作中,我们提出了一种新方法,即在实验室规模的爱因斯坦电梯中进行原子干涉测量。我们展示了每次测量的加速度灵敏度为6×10⁻⁹m/s²,总询问时间为2T = 200毫秒。我们还通过在几天内以高再现性操作爱因斯坦电梯,展示了进行长期统计研究的能力。