Suppr超能文献

当归治疗子宫内膜癌的疗效及机制:一项综合研究。

Efficacy and mechanisms of Angelica sinensis in treating endometrial cancer: an integrated study.

作者信息

Li Zhenyi, Jia Congchao, Zhou Yiqian, Wang Qin

机构信息

Clinical Medical College, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.

出版信息

Discov Oncol. 2025 May 24;16(1):904. doi: 10.1007/s12672-025-02619-8.

Abstract

BACKGROUND

Angelica-based formulas can improve quality of life in patients with endometrial cancer. However, the results remain controversial, and their mechanisms of action are unclear. In this study, we systematically explored the effects and mechanism of action of Angelica sinensis (AS) in endometrial cancer (EC) using network pharmacology and molecular docking.

METHODS

We systematically searched PubMed, Embase, Cochrane Library, Web of Science, Chinese Science and Technology Journals (CQVIP), China Academic Journals (CNKI), Wanfang, and Chinese Biomedical Literature database (SinoMed). Nine randomized controlled trials were enrolled in the study. In network pharmacology, ingredients of Angelica sinensis were screened, endometrial cancer related genes were then identified and the 'Herb-Ingredient-Target-Disease' network constructed. Molecular docking was finally employed for in silico simulation matching between representative Angelica sinensis ingredients and their target genes.

RESULTS

The meta-analysis of this research provides evidence to support the efficacy of angelica-based formulas in the treatment of endometrial cancer. Network pharmacology demonstrated that EGFR, TP53, CTNNB1, CCND1, and HRAS are the core targets of endometrial cancer, and ferulic acid and caffeic acid are the major bioactive ingredients of Angelica sinensis. Molecular docking showed that ferulic acid and caffeic acid can closely bind core targets.

CONCLUSIONS

Our study is the first to systematically apply bioinformatics methods-including meta-analysis, network pharmacology, and molecular docking-to explore the pharmacological and molecular mechanisms of Angelica sinensis in endometrial cancer treatment. Results of our study provide valuable scientific insights into the underlying mechanisms of Angelica sinensis in the treatment of endometrial cancer, serving as a crucial foundation for future research in this area.

摘要

背景

当归类方剂可改善子宫内膜癌患者的生活质量。然而,结果仍存在争议,其作用机制尚不清楚。在本研究中,我们使用网络药理学和分子对接系统地探讨了当归在子宫内膜癌(EC)中的作用及其机制。

方法

我们系统检索了PubMed、Embase、Cochrane图书馆、Web of Science、中国科技期刊数据库(CQVIP)、中国学术期刊全文数据库(CNKI)、万方数据库和中国生物医学文献数据库(SinoMed)。本研究纳入了9项随机对照试验。在网络药理学中,筛选当归的成分,然后鉴定子宫内膜癌相关基因,并构建“草药-成分-靶点-疾病”网络。最后采用分子对接对当归代表性成分与其靶基因进行计算机模拟匹配。

结果

本研究的荟萃分析为支持当归类方剂治疗子宫内膜癌的疗效提供了证据。网络药理学表明,表皮生长因子受体(EGFR)、肿瘤蛋白53(TP53)、β-连环蛋白(CTNNB1)、细胞周期蛋白D1(CCND1)和哈-柔二氏肉瘤病毒癌基因同源物(HRAS)是子宫内膜癌的核心靶点,阿魏酸和咖啡酸是当归的主要生物活性成分。分子对接表明,阿魏酸和咖啡酸可与核心靶点紧密结合。

结论

我们的研究首次系统地应用生物信息学方法,包括荟萃分析、网络药理学和分子对接,来探索当归在子宫内膜癌治疗中的药理和分子机制。我们的研究结果为当归治疗子宫内膜癌的潜在机制提供了有价值的科学见解,为该领域未来的研究奠定了关键基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验