Jaenicke R, Welsch R, Sára M, Sleytr U B
Biol Chem Hoppe Seyler. 1985 Jul;366(7):663-70. doi: 10.1515/bchm3.1985.366.2.663.
The surface layer of the cell envelope of Bacillus stearothermophilus consists of a regular array of protein subunits. As shown by dodecyl sulfate polyacrylamide gel-electrophoresis and ultracentrifugation, the fully solubilized S-layer protein represents a homogeneous entity with a subunit molecular mass of 115 +/- 5 kDa. Solubilization of the protein may be accomplished at acid pH, or using high concentrations of urea or guanidine X HCl. It is accompanied by (partial) denaturation, thus interfering with the characterization of the protein in its unperturbed native state. Removal of the solubilizing agent by dialysis or dilution allows the S-layer to be reassembled into two-dimensional crystalline lattices identical to those observed in intact cells. To determine the kinetics of association, optimum conditions are found to be rapid mixing with 0.1 M sodium phosphate pH 7.0, 20 degrees C, final protein concentration greater than 10 micrograms/ml. If the time course of the self-assembly is monitored by light scattering, as well as by chemical cross-linking with glutardialdehyde, multiphasic kinetics with a rapid initial phase and slow consecutive processes of higher than second-order are observed. The rapid phase may be attributed to the formation of oligomeric precursors (Mr greater than 10(6) ). Concentration-dependent light scattering measurements give evidence for a "critical concentration" of association, suggesting that patches of 12-16 protein subunits fuse and recrystallize into the final (native) S-layer structure. Recrystallization tends to be complete.