Li Hanru, Fu Tianning, Hao Hongchi, Yu Zhibin
College of Electronic Engineering, Ocean University of China, Qingdao, 266100, Shandong, China.
Sci Data. 2025 May 24;12(1):861. doi: 10.1038/s41597-025-05199-y.
Recent advancements in computer vision and deep learning have advanced automated vegetation monitoring, creating new opportunities for invasive species management. To this end, we introduce MAVSD (Multi-Angle View Segmentation Dataset), specifically designed for detecting Solidago canadensis L., a globally significant invasive plant. The dataset comprises high-resolution images captured by unmanned aerial vehicles from four angles (30°, 45°, 60°, and 90°), providing comprehensive coverage of plant structures and enabling in-depth understanding from multiple perspectives. MAVSD includes pixel-level semantic segmentation annotations across 13 classes, meticulously categorizing vegetation and environmental elements. Extensive experiments with state-of-the-art segmentation models validate MAVSD's effectiveness in enhancing invasive species detection and monitoring, with multi-angle training improving mIoU by up to 11% over single-angle baselines. The dataset's multi-angle, high-resolution characteristics strengthen ecological monitoring capabilities, offering valuable resources for research and environmental protection applications.
计算机视觉和深度学习的最新进展推动了自动化植被监测,为入侵物种管理创造了新机会。为此,我们引入了MAVSD(多角度视图分割数据集),它是专门为检测加拿大一枝黄花(一种具有全球重要意义的入侵植物)而设计的。该数据集包含由无人机从四个角度(30°、45°、60°和90°)拍摄的高分辨率图像,全面覆盖了植物结构,并能从多个角度进行深入了解。MAVSD包括13个类别的像素级语义分割注释,对植被和环境元素进行了细致分类。使用先进分割模型进行的大量实验验证了MAVSD在增强入侵物种检测和监测方面的有效性,多角度训练比单角度基线的平均交并比提高了多达11%。该数据集的多角度、高分辨率特性增强了生态监测能力,为研究和环境保护应用提供了宝贵资源。