Giulimondi Vera, Agrachev Mikhail, Kuzin Sergei, González-Acosta José Manuel, Ruiz-Ferrando Andrea, Krumeich Frank, Bondino Federica, Chiang Yung-Tai, Vanni Matteo, Jeschke Gunnar, López Núria, Pérez-Ramírez Javier
Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland.
NCCR Catalysis, Zürich, Switzerland.
Nat Commun. 2025 May 24;16(1):4842. doi: 10.1038/s41467-025-60169-7.
Deactivation of metal-based catalysts for vinyl chloride synthesis via acetylene hydrochlorination is often dictated by indispensable, catalytically-active carbon supports, but underlying mechanisms remain unclear. Carbon nitrides offer an attractive platform for studying them thanks to ordered structure and high N-content, which facilitates coking. Herein, we monitor the life and death of carbon nitride supports for Pt single atoms in acetylene hydrochlorination, demonstrating that specific N-functionalities and their restructuring cause distinct deactivation mechanisms. Varying polymerization and exfoliation degrees in pristine carbon nitrides (i.e., -NH termination and N-vacancy concentrations), we establish graphitic and pyridinic N-atoms as CH adsorption sites and pyridinic N-vacancies as coking sites through kinetic and spectroscopic analyses. Uniquely suited for probing point defects, operando electron paramagnetic spectroscopy, coupled to simulations, reveals that HCl drives depolymerization, by protonating heptazine-linking graphitic N-atoms, and generates graphitic N-vacancies, forming NH. These reduce CH adsorption and promote radical polymerization into coke, respectively, without altering Pt atoms. Design guidelines to mitigate deactivation are discussed, highlighting the importance of tracking active functionalities in carbons.
通过乙炔氢氯化反应合成氯乙烯的金属基催化剂失活通常由不可或缺的、具有催化活性的碳载体决定,但其潜在机制仍不清楚。由于具有有序结构和高氮含量,这有利于结焦,氮化物为研究这些机制提供了一个有吸引力的平台。在此,我们监测了乙炔氢氯化反应中铂单原子的氮化物载体的寿命和失活情况,证明特定的氮官能团及其重构会导致不同的失活机制。通过改变原始氮化物中的聚合度和剥离度(即-NH端基和N空位浓度),我们通过动力学和光谱分析确定石墨型氮原子和吡啶型氮原子为CH吸附位点,吡啶型N空位为结焦位点。特别适合探测点缺陷的原位电子顺磁共振光谱与模拟相结合,揭示了HCl通过质子化七嗪连接的石墨型氮原子驱动解聚,并产生石墨型N空位,形成NH。这些分别减少了CH吸附并促进了自由基聚合成焦炭,而不会改变铂原子。讨论了减轻失活的设计指导原则,强调了追踪碳中活性官能团的重要性。