Suppr超能文献

自旋动力学的非对易微扰理论解释了弛豫诱导双量子相干(RIDME)背景的因式分解特性。

Non-commutative perturbation theory for spin dynamics explains the factorization properties of RIDME background.

作者信息

Kuzin Sergei, Yulikov Maxim, Jeschke Gunnar

机构信息

Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, Zurich, 8093, Switzerland.

Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, Zurich, 8093, Switzerland.

出版信息

J Magn Reson. 2024 Aug;365:107729. doi: 10.1016/j.jmr.2024.107729. Epub 2024 Jul 2.

Abstract

The intermolecular hyperfine relaxation-induced dipolar modulation enhancement (ih-RIDME) experiment has a promising potential to quantitatively characterize the nuclear environment in the 0.8-3 nm range around an electron spin. Such information about the spatial arrangement of nuclei is of great interest for structural biology as well as for dynamic nuclear polarization (DNP) methods. In order to develop a reliable and sensitive spectroscopic tool, a solid data model needs to be established. Here, we attempt to provide a theoretical explanation for the experimentally observed properties of the ih-RIDME signal. Our main approach uses a perturbation expansion of the Baker-Campbell-Hausdorff formula during the transverse evolution of the electron spin, treating the nuclear dipolar Hamiltonian as a perturbation. We show that a product structure of the ih-RIDME signal follows directly from the statistical independence of the perturbation terms and the multinuclear hyperfine coupling, and that this signal composition is expected when the mixing time exceeds the 95% decay of the Hahn echo.

摘要

分子间超精细弛豫诱导的偶极调制增强(ih-RIDME)实验在定量表征电子自旋周围0.8 - 3纳米范围内的核环境方面具有广阔前景。这种关于原子核空间排列的信息对于结构生物学以及动态核极化(DNP)方法都极具吸引力。为了开发一种可靠且灵敏的光谱工具,需要建立一个坚实的数据模型。在此,我们试图为ih-RIDME信号的实验观测特性提供理论解释。我们的主要方法是在电子自旋的横向演化过程中,对贝克 - 坎贝尔 - 豪斯多夫公式进行微扰展开,将核偶极哈密顿量视为微扰。我们表明,ih-RIDME信号的乘积结构直接源于微扰项与多核超精细耦合的统计独立性,并且当混合时间超过哈恩回波的95%衰减时,预期会出现这种信号组成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验