Rincón-Iglesias Mikel, Krebsbach Peter, Correia Daniela M, Mendes-Felipe Cristian, Lanceros-Méndez Senentxu, Hernandez-Sosa Gerardo
BCMaterials, Basque Center for Materials, Bldg. Martina Casiano, UPV/EHU Science Park Barrio Sarriena s/n, 48940 Leioa, Spain.
Light Technology Institute, Karlsruhe Institute of Technology, Engesserstr. 13, 76131 Karlsruhe, Germany.
ACS Appl Mater Interfaces. 2025 Jun 4;17(22):32680-32690. doi: 10.1021/acsami.5c00505. Epub 2025 May 25.
The increasing number of sensors contributing to the Internet of Things (IoT) aggravates the e-waste generated globally. Thus, it is an urgent necessity to develop more sustainable sensors. This paper presents a fully inkjet-printed dual-response (electrical and visual) humidity sensor based on hydroxypropyl cellulose (HPC) and the ionic liquid bis(1-butyl-3-methylimidazolium) tetrachloronickelate ([Bmim][NiCl]). The active layer was printed on interdigitated silver electrodes on a flexible cellulose acetate substrate. The optimized ink includes HPC, [Bmim][NiCl], ethylene glycol, water, and Tergitol. HPC and the IL exhibit excellent compatibility, forming homogeneous films without phase separation even at high IL concentration. The printed sensor for an IL content of 50 wt % demonstrates a proportional response when varying the relative humidity (RH) from 30 to 90 RH%, with a high sensitivity of 163, comparable to that of a commercial reference sensor, a low hysteresis of 1.5 RH%, and a fast response time of 0.8 s. In addition, a visual response from colorless to cyan is observed upon dehydration. This color change is visible to the naked eye for a relative humidity below 30 RH% when a transmittance lower than 93% is obtained in the visible spectra. This dual-response humidity sensor, fabricated from sustainable materials and low-cost printing technology, has great potential for a variety of applications, including environmental monitoring, smart agriculture, fire safety, and quality control in the food industry.
越来越多的传感器接入物联网(IoT),加剧了全球电子垃圾的产生。因此,开发更具可持续性的传感器迫在眉睫。本文介绍了一种基于羟丙基纤维素(HPC)和离子液体双(1-丁基-3-甲基咪唑鎓)四氯镍酸盐([Bmim][NiCl])的全喷墨打印双响应(电学和视觉)湿度传感器。活性层被打印在柔性醋酸纤维素基板上的叉指式银电极上。优化后的墨水包括HPC、[Bmim][NiCl]、乙二醇、水和壬基酚聚氧乙烯醚。HPC和离子液体表现出优异的相容性,即使在高离子液体浓度下也能形成均匀的薄膜而无相分离。对于离子液体含量为50 wt%的打印传感器,当相对湿度(RH)从30%变化到90%时,呈现出比例响应,灵敏度高达163,与商业参考传感器相当,滞后率低至1.5%RH,响应时间快至0.8秒。此外,脱水时可观察到从无色到青色的视觉响应。当在可见光谱中获得低于93%的透光率时,对于低于30%RH的相对湿度,这种颜色变化肉眼可见。这种由可持续材料和低成本打印技术制成的双响应湿度传感器在包括环境监测、智能农业、消防安全和食品工业质量控制等各种应用中具有巨大潜力。