Suppr超能文献

用于仅基于磁共振成像的放射治疗治疗计划的具有集成分割框架的生成性证据合成。

Generative evidential synthesis with integrated segmentation framework for MR-only radiation therapy treatment planning.

作者信息

Mekki Lina, Ladra Matthew, Acharya Sahaja, Lee Junghoon

机构信息

Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA.

Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland, USA.

出版信息

Med Phys. 2025 Jul;52(7):e17828. doi: 10.1002/mp.17828. Epub 2025 Apr 11.

Abstract

BACKGROUND

Radiation therapy (RT) planning is a time-consuming process involving the contouring of target volumes and organs at risk, followed by treatment plan optimization. CT is typically used as the primary planning image modality as it provides electron density information needed for dose calculation. MRI is widely used for contouring after registration to CT due to its high soft tissue contrast. However, there exists uncertainties in registration, which propagate throughout treatment planning as contouring errors, and lead to dose inaccuracies. MR-only RT planning has been proposed as a solution to eliminate the need for CT scan and image registration, by synthesizing CT from MRI. A challenge in deploying MR-only planning in clinic is the lack of a method to estimate the reliability of a synthetic CT in the absence of ground truth. While methods have used sampling-based approaches to estimate model uncertainty over multiple inferences, such methods suffer from long run time and are therefore inconvenient for clinical use.

PURPOSE

To develop a fast and robust method for the joint synthesis of CT from MRI, estimation of model uncertainty related to the synthesis accuracy, and segmentation of organs at risk (OARs), in a single model inference.

METHODS

In this work, deep evidential regression is applied to MR-only brain RT planning. The proposed framework uses a multi-task vision transformer combining a single joint nested encoder with two distinct convolutional decoder paths for synthesis and segmentation separately. An evidential layer was added at the end of the synthesis decoder to jointly estimate model uncertainty in a single inference. The framework was trained and tested on a dataset of 119 (80 for training, 9 for validation, and 30 for test) paired T1-weighted MRI and CT scans with OARs contours.

RESULTS

The proposed method achieved mean ± SD SSIM of 0.820 ± 0.039, MAE of 47.4 ± 8.49 HU, and PSNR of 23.4 ± 1.13 for the synthesis task and dice similarity coefficient of 0.799 ± 0.132 (lenses), 0.945 ± 0.020 (eyes), 0.834 ± 0.059 (optic nerves), 0.679 ± 0.148 (chiasm), 0.947 ± 0.014 (temporal lobes), 0.849 ± 0.027 (hippocampus), 0.953 ± 0.024 (brainstem), 0.752 ± 0.228 (cochleae) for segmentation-in a total run time of 6.71 ± 0.25 s. Additionally, experiments on challenging test cases revealed that the proposed evidential uncertainty estimation highlighted the same uncertain regions as Monte Carlo-based epistemic uncertainty, thus highlighting the reliability of the proposed method.

CONCLUSION

A framework leveraging deep evidential regression to jointly synthesize CT from MRI, predict the related synthesis uncertainty, and segment OARs in a single model inference was developed. The proposed approach has the potential to streamline the planning process and provide clinicians with a measure of the reliability of a synthetic CT in the absence of ground truth.

摘要

背景

放射治疗(RT)计划是一个耗时的过程,包括勾画靶区和危及器官,随后进行治疗计划优化。CT通常用作主要的计划成像模态,因为它提供剂量计算所需的电子密度信息。MRI由于其高软组织对比度,在与CT配准后广泛用于勾画。然而,配准中存在不确定性,这些不确定性作为勾画误差在整个治疗计划中传播,并导致剂量不准确。仅基于MR的RT计划已被提出作为一种解决方案,通过从MRI合成CT来消除对CT扫描和图像配准的需求。在临床中部署仅基于MR的计划的一个挑战是在没有真实对照的情况下缺乏估计合成CT可靠性 的方法。虽然已有方法使用基于采样 的方法来估计多个推理上的模型不确定性,但这些方法运行时间长,因此不便于临床使用。

目的

开发一种快速且稳健 的方法用于在单个模型推理中从MRI联合合成CT、估计与合成精度相关的模型不确定性以及分割危及器官(OARs)。

方法

在这项研究中 将深度证据回归应用于仅基于MR的脑部RT计划中。所提出的框架使用一个多任务视觉变换器,该变换器将单个联合嵌套编码器与两条不同的卷积解码器路径相结合,分别用于合成和分割。在合成解码器末尾添加一个证据层,以在单个推理中联合估计模型不确定性。该框架在一个包含119对(80对用于训练,9对用于验证,30对用于测试)带有OARs轮廓的T1加权MRI和CT扫描数据集上进行训练和测试。

结果

对于合成任务,所提出的方法实现了平均±标准差结构相似性指数(SSIM)为0.820±0.039、平均绝对误差(MAE)为47.4±8.49HU、峰值信噪比(PSNR)为23.4±1.13;对于分割任务,骰子相似系数分别为0.799±0.132(晶状体)、0.945±0.020(眼睛)、0.834±0.059(视神经)、0.679±0.148(视交叉)、0.947±0.014(颞叶)、0.849±0.027(海马体)、0.953±0.024(脑干)、0.752±0.228(耳蜗),总运行时间为6.71±0.25秒。此外,在具有挑战性的测试案例上的实验表明,所提出的证据不确定性估计突出显示了与基于蒙特卡洛的认知不确定性相同的不确定区域,从而突出了所提出方法的可靠性。

结论

开发了一个利用深度证据回归在单个模型推理中从MRI联合合成CT、预测相关合成不确定性并分割OARs的框架。所提出的方法有可能简化计划过程,并在没有真实对照的情况下为临床医生提供合成CT可靠性的度量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验