Punnam Pradeep Reddy, Tatavarthi Venkata Sai Teja, Surasani Vikranth Kumar
Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani-Hyderabad campus, Hyderabad, 500078, India.
Department of Earth Sciences, Indian Institute of Technology (IIT) Bombay, Powai, 400076, Mumbai, India.
Sci Rep. 2025 May 25;15(1):18161. doi: 10.1038/s41598-025-03416-7.
A thorough understanding of subsurface formation zones is critical for safe and long-term storage using CO₂ geological sequestration (CGS). A major concern in CGS is the risk of CO₂ leakage due to plume migration through structural faults and cracks in the caprock. This research investigates the effects of caprock morphologies on CO₂ plume migration, solubility trapping, and leakage risks using multiphase multicomponent reactive transport simulations. Three synthetic domains with varying caprock morphologies are modelled, incorporating geological subsurface features. The study reveals that the presence of cracks significantly impacts CO₂ entrapment and leakage. In the current analysis outcomes, in comparison between the synthetic domain-1 and - 2, due to the presence of an anticline structure in synthetic domain-1 reduced sweeping efficiency by 25%, which in turn influenced solubility trapping, with leakage recorded 15% lower in synthetic domain-2 compared to domain-1. In contrast, synthetic domain-3, based on the Deccan traps stairsteps morphology, showed 30% less leakage despite injecting 21.6 Mt of CO₂, compared to the 18.9 Mt injected into domains 1 and 2. This is due to the enhanced CO₂ plume migration through stairstep traps in the lateral direction, which promoted primary trapping followed by solubility trapping. The findings highlight the importance of geological structures in determining CO₂ migration patterns, sweeping efficiency, and leakage risks, contributing to the optimization of CO₂ storage strategies. These insights are critical for addressing gaps in CGS implementation and ensuring the safe and efficient sequestration of CO₂ over the long term.
深入了解地下地层带对于利用二氧化碳地质封存(CGS)进行安全和长期储存至关重要。CGS中的一个主要问题是由于羽流通过盖层中的构造断层和裂缝迁移而导致二氧化碳泄漏的风险。本研究使用多相多组分反应输运模拟研究了盖层形态对二氧化碳羽流迁移、溶解捕集和泄漏风险的影响。对具有不同盖层形态的三个合成区域进行了建模,并纳入了地质地下特征。研究表明,裂缝的存在对二氧化碳的捕集和泄漏有显著影响。在当前的分析结果中,在合成区域1和区域2的比较中,由于合成区域1中存在背斜结构,扫油效率降低了25%,这反过来又影响了溶解捕集,与区域1相比,合成区域2的泄漏量降低了15%。相比之下,基于德干地堑阶梯形态的合成区域3,尽管注入了21.6 Mt的二氧化碳,但与注入区域1和区域2的18.9 Mt相比,泄漏量减少了30%。这是由于二氧化碳羽流在横向通过阶梯状圈闭的迁移增强,促进了初次捕集,随后是溶解捕集。研究结果突出了地质结构在确定二氧化碳迁移模式、扫油效率和泄漏风险方面的重要性,有助于优化二氧化碳储存策略。这些见解对于弥补CGS实施中的差距以及确保长期安全有效地封存二氧化碳至关重要。