Yang Peizheng, Wang Xiangyu, Yang Jianhua, Yan Biaobiao, Sheng Haiyang, Li Yan, Yang Yinfeng, Wang Jinghui
School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui 230038, China.
Anhui Provincial Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei 230038, China.
ACS Omega. 2025 May 11;10(19):19770-19796. doi: 10.1021/acsomega.5c00981. eCollection 2025 May 20.
Polygonati Rhizoma, a traditional Chinese medicine, has demonstrated immunomodulatory and anticancer properties, yet its precise mechanisms in stomach adenocarcinoma (STAD) remain underexplored. This study aims to uncover the multitarget mechanisms of Polygonati Rhizoma in regulating the tumor immune microenvironment in STAD using artificial intelligence (AI)-driven network pharmacology, bioinformatics, and single-cell RNA sequencing, offering new insights into its immunotherapeutic potential. This study harnessed the power of AI to unravel the molecular mechanisms underlying Polygonati Rhizoma's effects. AI-driven methodologies screened 38 putative constituents, retaining 8 based on ADME criteria. Machine Learning algorithms predicted potential targets, which were cross-referenced with 5,569 immune-related genes from GeneCards, revealing 52 immune-associated targets. Differential expression analysis of the STAD data set identified 18 overlapping DEGs with prognostic significance and immune cell infiltration correlations. Key targets (AKT1, TP53, PTGS2 and VEGFA) emerged as central nodes in the network, with AI-assisted molecular docking confirming strong binding affinities, particularly between diosgenin and these core proteins. Molecular dynamics simulations further validated these interactions. Single-cell RNA sequencing revealed distinct target-gene expression patterns across malignant, stromal, and immune cell subsets in digestive-system tumors. In vitro, Polygonati Rhizoma extract significantly inhibited HGC-27 cell viability and increased intracellular ROS levels. These findings underscore the critical role of AI in integrating multiscale analyses, unveiling a multitarget immunomodulatory and antitumor mechanism for Polygonati Rhizoma in STAD, and providing a foundation for future preclinical and clinical studies.
黄精,一种传统中药,已显示出免疫调节和抗癌特性,但其在胃腺癌(STAD)中的精确机制仍未得到充分探索。本研究旨在利用人工智能(AI)驱动的网络药理学、生物信息学和单细胞RNA测序,揭示黄精调节STAD肿瘤免疫微环境的多靶点机制,为其免疫治疗潜力提供新见解。本研究利用人工智能的力量来揭示黄精作用的分子机制。人工智能驱动的方法筛选出38种假定成分,根据ADME标准保留了8种。机器学习算法预测了潜在靶点,并与来自GeneCards的5569个免疫相关基因进行交叉参考,揭示了52个免疫相关靶点。对STAD数据集的差异表达分析确定了18个具有预后意义和免疫细胞浸润相关性的重叠差异表达基因(DEG)。关键靶点(AKT1、TP53、PTGS2和VEGFA)成为网络中的中心节点,人工智能辅助的分子对接证实了强结合亲和力,特别是薯蓣皂苷元与这些核心蛋白之间的亲和力。分子动力学模拟进一步验证了这些相互作用。单细胞RNA测序揭示了消化系统肿瘤中恶性、基质和免疫细胞亚群之间不同的靶基因表达模式。在体外,黄精提取物显著抑制HGC-27细胞活力并提高细胞内活性氧水平。这些发现强调了人工智能在整合多尺度分析方面的关键作用,揭示了黄精在STAD中的多靶点免疫调节和抗肿瘤机制,并为未来的临床前和临床研究奠定了基础。