Ercan Bahar Tosun, Mutlu Adem, Gultekin Sirin Siyahjani, Gultekin Burak, Dincalp Haluk, Zafer Ceylan
Ege University, Solar Energy Institute, 35100 Izmir, Türkiye.
Kubilay Paint Industry, 35800 Izmir, Türkiye.
ACS Omega. 2025 May 7;10(19):19723-19734. doi: 10.1021/acsomega.5c00860. eCollection 2025 May 20.
This study modifies epoxy acrylate to enhance its mechanical, thermal, and barrier properties, such as hardness, flexibility, gloss, adhesion, and water/oxygen resistance. Adipic acid (AdAc) and 3-aminotriethoxysilane (ATES) were incorporated into the epoxy acrylate structure, and the resulting oligomers were characterized by Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopy. Thermal analysis showed that AdAc-modified epoxy acrylate oligomer-3 (AdAc-MO3) (1.70% AdAc) had a lower glass transition temperature ( ) of 48.2 °C, improving flexibility, while ATES-modified epoxy acrylate oligomer-5 (ATES-MO5) (1.70% ATES) exhibited a higher of 56 °C, enhancing thermal stability. AdAc-MO3 achieved excellent mechanical and barrier performance, with a water vapor transmission rate (WVTR) of 7.46 g/mday and an oxygen transmission rate (OTR) of 5.10 g/mday. Mechanical tests confirmed that AdAc-MO3 balanced hardness and flexibility, passing adhesion and conical mandrel tests without deformation. The encapsulants were tested on perovskite solar cells (PSCs) with an FTO/Li-TiO/perovskite/Spiro-OMeTAD/Au configuration. After 48 h of stability testing under 60% humidity, 25 °C, and a light intensity of 100 mW/cm, AdAc-MO3 retained 26.8% of its initial power conversion efficiency (PCE), compared to 20.5% for the control device. ATES-MO3 retained 56.1% of its initial PCE, outperforming both the control and AdAc-MO3, but its higher cross-linking density reduced adhesion and flexibility, limiting its use in certain encapsulation applications. Visible light curing further improved stability, reducing efficiency loss to 8% compared to 16% with UV curing. These results demonstrate that AdAc-MO3 is a promising encapsulant for PSCs, combining enhanced properties and stability under realistic conditions.
本研究对环氧丙烯酸酯进行改性,以增强其机械性能、热性能和阻隔性能,如硬度、柔韧性、光泽度、附着力以及耐水/氧性。将己二酸(AdAc)和3-氨基三乙氧基硅烷(ATES)引入环氧丙烯酸酯结构中,并用傅里叶变换红外光谱(FTIR)和核磁共振光谱(NMR)对所得低聚物进行表征。热分析表明,己二酸改性环氧丙烯酸酯低聚物-3(AdAc-MO3)(含1.70%己二酸)的玻璃化转变温度较低,为48.2℃,柔韧性得到改善;而3-氨基三乙氧基硅烷改性环氧丙烯酸酯低聚物-5(ATES-MO5)(含1.70% 3-氨基三乙氧基硅烷)的玻璃化转变温度较高,为56℃,热稳定性增强。AdAc-MO3具有优异的机械性能和阻隔性能,其水蒸气透过率(WVTR)为7.46 g/m²·天,氧气透过率(OTR)为5.10 g/m²·天。机械测试证实,AdAc-MO3在硬度和柔韧性之间取得了平衡,通过了附着力和锥形心轴测试且无变形。对具有FTO/Li-TiO₂/钙钛矿/Spiro-OMeTAD/Au结构的钙钛矿太阳能电池(PSC)进行了密封剂测试。在60%湿度、25℃和100 mW/cm²光照强度下进行48小时稳定性测试后,AdAc-MO3保留了其初始功率转换效率(PCE)的26.8%,而对照器件为20.5%。ATES-MO3保留了其初始PCE的56.1%,性能优于对照器件和AdAc-MO3,但较高的交联密度降低了附着力和柔韧性,限制了其在某些封装应用中的使用。可见光固化进一步提高了稳定性,与紫外线固化相比,效率损失从16%降至8%。这些结果表明,AdAc-MO3是一种有前景的PSC密封剂,在实际条件下兼具增强的性能和稳定性。