Suppr超能文献

利用化学计量学和机器学习的傅里叶变换近红外光谱法快速检测烟草香料的物理化学指标

Rapid Detection of Physicochemical Indicators of Tobacco Flavorings Using Fourier-Transform Near Infrared Spectroscopy with Chemometrics and Machine Learning.

作者信息

Xiao Qinlin, Zheng Jian, Wen Jing, Deng Fada, Gu Ruifang, Li Li, He Yong, Yang Juan

机构信息

Technology Center, China Tobacco Sichuan Industrial Co., Ltd., Chengdu 610066, China.

College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.

出版信息

ACS Omega. 2025 May 6;10(19):19714-19722. doi: 10.1021/acsomega.5c00225. eCollection 2025 May 20.

Abstract

Timely and rapid monitoring of the quality of tobacco flavorings is crucial for the accurate quality management of cigarette products. In this study, FT-NIR spectroscopy combined with chemometrics and machine learning was used to detect physicochemical indicators of tobacco flavorings. FT-NIR spectra of 1,608 flavoring samples, encompassing 145 categories and 90 production batches from actual industrial scenarios, were collected. The physicochemical indicators, including the acid value, relative density, and refractive index, were accurately measured. The effect of different spectral preprocessing methods (standard normal variate transformation (SNV), multiplicative scatter correction (MSC), and normalization) was compared. The least angle regression (LAR), successive projection algorithm (SPA), and random frog (RF) were used to select characteristic wavelengths. Partial least-squares regression (PLSR), decision tree (DT), least-squares-support vector machine (LSSVM), and convolutional neural network regression (CNNR) were applied to establish detection models. For acid value, the normalization-SPA-LSSVM model achieved the best performance, reaching an Rp of 0.929, RMSEP of 1.155, and an RPD of 3.741. For relative density, the MSC-LAR-LSSVM model performed best, with an Rp of 0.951, RMSEP of 0.018, and an RPD of 4.481. For the refractive index, the SNV-SPA-LSSVM model obtained satisfactory results, with an Rp at 0.955, an RMSEP at 0.004, and an RPD of 4.664. The results illustrated that FT-NIR spectroscopy is an effective approach for detecting physicochemical indicators of large-scale industrial tobacco flavorings and holds promise for accurate quality assessment of tobacco flavoring products. Also, the performance of the CNNR model is not consistently superior to that of conventional models, especially in situations when the number of features used for building models is relatively limited.

摘要

及时、快速地监测烟草香精的质量对于卷烟产品的精确质量管理至关重要。在本研究中,傅里叶变换近红外光谱(FT-NIR)结合化学计量学和机器学习用于检测烟草香精的理化指标。收集了1608个香精样品的FT-NIR光谱,这些样品涵盖了实际工业场景中的145个类别和90个生产批次。准确测量了包括酸值、相对密度和折射率在内的理化指标。比较了不同光谱预处理方法(标准正态变量变换(SNV)、多元散射校正(MSC)和归一化)的效果。使用最小角回归(LAR)、连续投影算法(SPA)和随机蛙跳(RF)来选择特征波长。应用偏最小二乘回归(PLSR)、决策树(DT)、最小二乘支持向量机(LSSVM)和卷积神经网络回归(CNNR)建立检测模型。对于酸值,归一化-SPA-LSSVM模型表现最佳,Rp为0.929,RMSEP为1.155,RPD为3.741。对于相对密度,MSC-LAR-LSSVM模型表现最佳,Rp为0.951,RMSEP为0.018,RPD为4.481。对于折射率,SNV-SPA-LSSVM模型取得了满意的结果,Rp为0.955,RMSEP为0.004,RPD为4.664。结果表明,FT-NIR光谱是检测大规模工业烟草香精理化指标的有效方法,有望对烟草香精产品进行准确的质量评估。此外,CNNR模型的性能并不总是优于传统模型,特别是在用于构建模型的特征数量相对有限的情况下。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5543/12096194/0d0b87b24883/ao5c00225_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验