Luttermann Max, Prestele Reinhard, Grimm Volker, Groeneveld Jürgen
Department of Ecological Modelling Helmholtz Centre for Environmental Research - UFZ Leipzig Germany.
Ammerländer Heerstraße 114-118 Carl von Ossietzky Universität Oldenburg Oldenburg Germany.
Ecol Evol. 2025 May 22;15(5):e71468. doi: 10.1002/ece3.71468. eCollection 2025 May.
The BEE-STEWARD model simulates the population dynamics and behavior of bumblebees, including foraging, in remarkable detail, allowing the impact of various stressors on their populations to be assessed. To support the underlying detailed mechanistic descriptions, BEE-STEWARD requires extensive parameterization, including corolla depth, which affects the handling time of foraging bees, for each flower species in the simulated landscape. However, this detailed approach limits the applicability of BEE-STEWARD due to the lack of data for corolla depths, while also resulting in unrealistic foraging trip durations. Here we present a simplified foraging module that uses a constant handling time for foraging, thus eliminating the need to parameterize corolla depth. This simplification allows us both to apply the model to large scales and to assume handling times that reproduce observed foraging trip durations. Our new foraging module allows large-scale population projections with BEE-STEWARD. This increases its value in policy contexts and contributes to understanding and mitigating bumblebee declines.
蜜蜂管理(BEE - STEWARD)模型能够非常详细地模拟大黄蜂的种群动态和行为,包括觅食行为,从而可以评估各种压力源对其种群的影响。为了支持其背后详细的机制描述,BEE - STEWARD需要进行广泛的参数化设置,包括模拟景观中每种花卉的花冠深度,因为花冠深度会影响觅食蜜蜂的处理时间。然而,由于缺乏花冠深度的数据,这种详细的方法限制了BEE - STEWARD的适用性,同时还导致觅食行程持续时间不切实际。在此,我们提出了一个简化的觅食模块,该模块对觅食采用恒定的处理时间,从而无需对花冠深度进行参数化设置。这种简化使我们既能将该模型应用于大尺度范围,又能假设出与观察到的觅食行程持续时间相符的处理时间。我们新的觅食模块使BEE - STEWARD能够进行大规模的种群预测。这增加了其在政策背景下的价值,并有助于理解和缓解大黄蜂数量的下降。