Becher M A, Grimm V, Knapp J, Horn J, Twiston-Davies G, Osborne J L
Environment & Sustainability Institute, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK.
UFZ, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.
Ecol Modell. 2016 Nov 24;340:126-133. doi: 10.1016/j.ecolmodel.2016.09.013.
Social bees are central place foragers collecting floral resources from the surrounding landscape, but little is known about the probability of a scouting bee finding a particular flower patch. We therefore developed a software tool, BEESCOUT, to theoretically examine how bees might explore a landscape and distribute their scouting activities over time and space. An image file can be imported, which is interpreted by the model as a "forage map" with certain colours representing certain crops or habitat types as specified by the user. BEESCOUT calculates the size and location of these potential food sources in that landscape relative to a bee colony. An individual-based model then determines the detection probabilities of the food patches by bees, based on parameter values gathered from the flight patterns of radar-tracked honeybees and bumblebees. Various "search modes" describe hypothetical search strategies for the long-range exploration of scouting bees. The resulting detection probabilities of forage patches can be used as input for the recently developed honeybee model BEEHAVE, to explore realistic scenarios of colony growth and death in response to different stressors. In example simulations, we find that detection probabilities for food sources close to the colony fit empirical data reasonably well. However, for food sources further away no empirical data are available to validate model output. The simulated detection probabilities depend largely on the bees' search mode, and whether they exchange information about food source locations. Nevertheless, we show that landscape structure and connectivity of food sources can have a strong impact on the results. We believe that BEESCOUT is a valuable tool to better understand how landscape configurations and searching behaviour of bees affect detection probabilities of food sources. It can also guide the collection of relevant data and the design of experiments to close knowledge gaps, and provides a useful extension to the BEEHAVE honeybee model, enabling future users to explore how landscape structure and food availability affect the foraging decisions and patch visitation rates of the bees and, in consequence, to predict colony development and survival.
群居性蜜蜂是从周围景观中采集花卉资源的中心地觅食者,但对于一只侦察蜂找到特定花丛的概率却知之甚少。因此,我们开发了一种软件工具BEESCOUT,从理论上研究蜜蜂如何探索景观以及如何在时间和空间上分配它们的侦察活动。可以导入一个图像文件,该模型将其解释为一张“觅食地图”,其中某些颜色代表用户指定的某些作物或栖息地类型。BEESCOUT计算该景观中这些潜在食物源相对于蜂群的大小和位置。然后,一个基于个体的模型根据从雷达跟踪的蜜蜂和大黄蜂飞行模式收集的参数值,确定蜜蜂发现食物斑块的概率。各种“搜索模式”描述了侦察蜂进行远距离探索的假设搜索策略。觅食斑块的最终发现概率可作为最近开发的蜜蜂模型BEEHAVE的输入,以探索蜂群在应对不同压力源时生长和死亡的现实情景。在示例模拟中,我们发现靠近蜂群的食物源的发现概率与经验数据相当吻合。然而,对于更远的食物源,没有经验数据可用于验证模型输出。模拟的发现概率在很大程度上取决于蜜蜂的搜索模式,以及它们是否交换有关食物源位置的信息。尽管如此,我们表明景观结构和食物源的连通性会对结果产生强烈影响。我们认为BEESCOUT是一个有价值的工具,有助于更好地理解景观配置和蜜蜂的搜索行为如何影响食物源的发现概率。它还可以指导相关数据的收集和实验设计,以填补知识空白,并为BEEHAVE蜜蜂模型提供有用的扩展,使未来的用户能够探索景观结构和食物可获得性如何影响蜜蜂的觅食决策和斑块访问率,进而预测蜂群的发展和生存。