Suppr超能文献

用于骨再生的快速形状记忆功能及个性化PLTMC/SIM/MBG复合支架

Fast shape memory function and personalized PLTMC/SIM/MBG composite scaffold for bone regeneration.

作者信息

Hu Xulin, Cheng Shengwen, Liu Senrui, Zhou Minchang, Liu Junyan, Wei Jiaying, Lan Yixuan, Zhai Yu, Luo Xiaohong, Dong Mingfei, Xiong Zu, Huang Wei, Zhao Chen

机构信息

Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, 610081, PR China.

Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China.

出版信息

Mater Today Bio. 2025 May 2;32:101791. doi: 10.1016/j.mtbio.2025.101791. eCollection 2025 Jun.

Abstract

Orthopedic clinical practice faces significant challenges in treating critical-sized bone defects due to extensive tissue damage and prolonged healing. To address these limitations, this study integrated shape-memory polymers with 3D printing to engineer bioactive scaffolds composed of poly(l-lactide-co-trimethylene carbonate) (PLTMC), simvastatin (SIM), and mesoporous bioactive glass (MBG) via low-temperature rapid prototyping. The PLTMC/SIM/MBG composite scaffold exhibited exceptional porosity (78.5 % ± 1.5 %) and load-bearing compressive strength (66.33 ± 1.44 MPa at 30 % MBG). In addition, its thermoresponsive shape-memory behavior enabled intraoperative molding to precisely conform to defect geometries, while the sustained release of SIM and MBG ionic exchange together created a bioactive microenvironment. Mechanistically, the scaffold activated the Wnt pathway to enhance the osteogenic differentiation of mesenchymal stem cells, maintaining cytocompatibility. In vivo, directional bone regeneration occurred along the degradable scaffold, driven by synergistic topographical guidance from 3D-printed pores and biochemical cues from SIM and MBG. The shape-adaptive design preserved mechanical continuity with the host bone during remodeling. These results demonstrate a personalized solution for large defects, merging surgical adaptability through shape-memory functionality with bioactive efficacy via structural and biochemical synergy, overcoming the limitations of conventional implants in anatomical matching and regenerative performance.

摘要

由于广泛的组织损伤和愈合时间延长,骨科临床实践在治疗临界尺寸骨缺损方面面临重大挑战。为了克服这些局限性,本研究将形状记忆聚合物与3D打印相结合,通过低温快速成型技术制备了由聚(L-丙交酯-共-三亚甲基碳酸酯)(PLTMC)、辛伐他汀(SIM)和介孔生物活性玻璃(MBG)组成的生物活性支架。PLTMC/SIM/MBG复合支架具有优异的孔隙率(78.5%±1.5%)和承重抗压强度(在MBG含量为30%时为66.33±1.44MPa)。此外,其热响应形状记忆行为使术中成型能够精确贴合缺损几何形状,而SIM的持续释放和MBG的离子交换共同创造了一个生物活性微环境。从机制上讲,该支架激活Wnt通路以增强间充质干细胞的成骨分化,保持细胞相容性。在体内,沿可降解支架发生定向骨再生,这是由3D打印孔隙的协同地形引导以及SIM和MBG的生化信号驱动的。形状适应性设计在重塑过程中保持了与宿主骨的机械连续性。这些结果展示了一种针对大尺寸缺损的个性化解决方案,通过形状记忆功能实现手术适应性,同时通过结构和生化协同作用实现生物活性功效,克服了传统植入物在解剖匹配和再生性能方面的局限性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83c4/12098156/abc700ba4c20/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验