Suppr超能文献

改善急诊科就诊风险预测:探索应用患者门户网站信息的操作效用。

Improving Emergency Department Visit Risk Prediction: Exploring the Operational Utility of Applied Patient Portal Messages.

作者信息

Kiani Hanna, Hassan Sohaib, Genkins Julian Z, Bilir Jasmine, Kadie Julia, Le Tran, Suffoletto Jo-Anne, Chen Jonathan H

机构信息

Stanford Medicine, Stanford University, Palo Alto, CA.

Department of Biomedical Data Science, Stanford University, Palo Alto, CA.

出版信息

AMIA Annu Symp Proc. 2025 May 22;2024:610-619. eCollection 2024.

Abstract

Patient portal messages represent a unique source of clinical data due to how they represent the voice of the patient, provide a glimpse into care delivery between episodic synchronous appointments, and capture variations in patient behavior and health literacy. There is little understanding of how to best apply modern natural language processing (NLP) approaches, such as large, pre-trained language models (LLMs), to patient messages. In this study, we aim to explore different approaches in incorporating patient messages into an existing Emergency Departments (ED) visit risk prediction model currently deployed at Stanford Health Care. With the addition of patient message frequencies to the baseline we were able to achieve an improved AUC of .77 and a jump in the F1 score. In future work, we aim to build upon these findings and further test combination models to incorporate features around patient message content, in addition to message frequencies.

摘要

患者门户消息是临床数据的独特来源,因为它们代表了患者的声音,让我们得以一窥非同步预约就诊期间的医疗服务情况,并捕捉患者行为和健康素养的差异。对于如何最好地将现代自然语言处理(NLP)方法,如大型预训练语言模型(LLM),应用于患者消息,人们了解甚少。在本研究中,我们旨在探索将患者消息纳入斯坦福医疗保健公司目前部署的现有急诊科(ED)就诊风险预测模型的不同方法。通过在基线中加入患者消息频率,我们能够将AUC提高到0.77,并使F1分数大幅提升。在未来的工作中,我们旨在基于这些发现,进一步测试组合模型,以纳入除消息频率之外的围绕患者消息内容的特征。

相似文献

本文引用的文献

3
7
Drug-related emergency department visits: prevalence and risk factors.与药物相关的急诊科就诊:患病率及危险因素。
Intern Emerg Med. 2022 Aug;17(5):1453-1462. doi: 10.1007/s11739-022-02935-9. Epub 2022 Feb 7.
10
Limitations of Transformers on Clinical Text Classification.Transformer 在临床文本分类上的局限性。
IEEE J Biomed Health Inform. 2021 Sep;25(9):3596-3607. doi: 10.1109/JBHI.2021.3062322. Epub 2021 Sep 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验