Gong Lei, Bresnick Jaren, Zhang Aidong, Wu Cathy, Jha Kishlay
University of Virginia, Charlottesville, VA, USA.
University of Delaware, Newark, DE, USA.
AMIA Annu Symp Proc. 2025 May 22;2024:453-462. eCollection 2024.
Social determinants of health (SDoH) significantly impacts health outcomes and contributes to perpetuating health disparities across healthcare applications. However, automatic extraction of SDoH information from Electronic Health Records (EHRs) is challenging due to the unstructured nature of clinical narratives that contain SDoH related information. Recent advances in Large Language Models (LLMs) have shown great promise for automated SDoH extraction. However, their performance suffers for the imbalanced SDoH categories due to the data scarcity issues. To address this, we propose an innovative approach that augments LLMs with semantic knowledge obtained from the Unified Medical Language Systems (UMLS). This strategy enriches the feature representations of imbalanced SDoH classes, leading to accurate SDoH extraction. More specifically, our proposed data augmentation strategy generates semantically enriched clinical narratives at the LLM pre-finetuning stage. This approach enables the LLM to better adapt to the target data and leads to a good initialization for the finetuning stage. Through extensive experiments using publicly available MIMIC-SDoH data, the proposed approach demonstrates significant improvement in results for the SDoH extraction, especially for the imbalanced classes.
健康的社会决定因素(SDoH)对健康结果有重大影响,并导致医疗保健应用中的健康差距长期存在。然而,由于包含SDoH相关信息的临床叙述具有非结构化性质,从电子健康记录(EHRs)中自动提取SDoH信息具有挑战性。大语言模型(LLMs)的最新进展显示出在自动提取SDoH方面具有巨大潜力。然而,由于数据稀缺问题,它们在不平衡的SDoH类别上的性能受到影响。为了解决这个问题,我们提出了一种创新方法,用从统一医学语言系统(UMLS)获得的语义知识增强LLMs。这种策略丰富了不平衡SDoH类别的特征表示,从而实现准确的SDoH提取。更具体地说,我们提出的数据增强策略在LLM预微调阶段生成语义丰富的临床叙述。这种方法使LLM能够更好地适应目标数据,并为微调阶段提供良好的初始化。通过使用公开可用的MIMIC-SDoH数据进行广泛实验,所提出的方法在SDoH提取结果方面显示出显著改进,特别是对于不平衡类别。