Suppr超能文献

重症监护病房获得性急性肾损伤患者紊乱情况的神经格兰杰因果关系发现

Neural Granger Causal Discovery for Derangements in ICU-Acquired Acute Kidney Injury Patients.

作者信息

Xu Haowei, Liu Wentie, Shi Tongyue, Kong Guilan

机构信息

National Institute of Health Data Science, Peking University, Beijing, China.

Advanced Institute of Information Technology, Peking University, Hangzhou, China.

出版信息

AMIA Annu Symp Proc. 2025 May 22;2024:1265-1274. eCollection 2024.

Abstract

Nowadays, healthcare systems increasingly utilize automated surveillance of electronic medical record (EMR) data to detect adverse events with specific patterns. Despite these technological advances, the early identification of adverse events remains challenging due to the absence of clearly defined prodromal sequences that could signal the onset of such events. Achieving clinically meaningful and interpretable prediction outcomes necessitates a framework that is capable of (i) deducing temporal relationships among various time series features within EMR data (e.g., laboratory test results, vital signs), and (ii) identifying specific patterns that herald the occurrence of an adverse event (e.g., acute kidney injury (AKI)). This study employs a time series forecasting approach to undertake neural Granger causal analysis, and further enhance it by integrating a personalized PageRank algorithm to analyze the critical causal derangements among ICU-acquired AKIpatients. An experimental analysis based on the proposed methodology was conducted using a dataset from MIMIC-IV.Finally, a Granger causality (GC) graph, which revealed several interpretable GC chains that could be used to predict the occurrence ofAKI in ICU settings, was generated. The GC graph and GC chains identified in this study have the potential to aid ICU physicians in providing timely interventions and may help improve patient outcomes.

摘要

如今,医疗保健系统越来越多地利用电子病历(EMR)数据的自动监测来检测具有特定模式的不良事件。尽管有这些技术进步,但由于缺乏能够预示此类事件发生的明确界定的前驱序列,不良事件的早期识别仍然具有挑战性。要实现具有临床意义且可解释的预测结果,需要一个能够(i)推断EMR数据中各种时间序列特征(如实验室检查结果、生命体征)之间的时间关系,以及(ii)识别预示不良事件发生的特定模式(如急性肾损伤(AKI))的框架。本研究采用时间序列预测方法进行神经格兰杰因果分析,并通过整合个性化的PageRank算法进一步增强该分析,以分析重症监护病房(ICU)获得性AKI患者之间的关键因果紊乱。基于所提出的方法,使用来自MIMIC-IV的数据集进行了实验分析。最后,生成了一个格兰杰因果关系(GC)图,该图揭示了几条可用于预测ICU环境中AKI发生的可解释的GC链。本研究中确定的GC图和GC链有可能帮助ICU医生提供及时的干预措施,并可能有助于改善患者的预后。

相似文献

本文引用的文献

2
Granger Causality: A Review and Recent Advances.格兰杰因果关系:综述与最新进展
Annu Rev Stat Appl. 2022 Mar;9(1):289-319. doi: 10.1146/annurev-statistics-040120-010930. Epub 2021 Nov 17.
5
Acute kidney injury.急性肾损伤。
Nat Rev Dis Primers. 2021 Jul 15;7(1):52. doi: 10.1038/s41572-021-00284-z.
7
Neural Granger Causality.神经格兰杰因果关系。
IEEE Trans Pattern Anal Mach Intell. 2022 Aug;44(8):4267-4279. doi: 10.1109/TPAMI.2021.3065601. Epub 2022 Jul 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验