IEEE Trans Pattern Anal Mach Intell. 2022 Aug;44(8):4267-4279. doi: 10.1109/TPAMI.2021.3065601. Epub 2022 Jul 1.
While most classical approaches to Granger causality detection assume linear dynamics, many interactions in real-world applications, like neuroscience and genomics, are inherently nonlinear. In these cases, using linear models may lead to inconsistent estimation of Granger causal interactions. We propose a class of nonlinear methods by applying structured multilayer perceptrons (MLPs) or recurrent neural networks (RNNs) combined with sparsity-inducing penalties on the weights. By encouraging specific sets of weights to be zero-in particular, through the use of convex group-lasso penalties-we can extract the Granger causal structure. To further contrast with traditional approaches, our framework naturally enables us to efficiently capture long-range dependencies between series either via our RNNs or through an automatic lag selection in the MLP. We show that our neural Granger causality methods outperform state-of-the-art nonlinear Granger causality methods on the DREAM3 challenge data. This data consists of nonlinear gene expression and regulation time courses with only a limited number of time points. The successes we show in this challenging dataset provide a powerful example of how deep learning can be useful in cases that go beyond prediction on large datasets. We likewise illustrate our methods in detecting nonlinear interactions in a human motion capture dataset.
虽然大多数经典的格兰杰因果关系检测方法都假设线性动态,但许多实际应用中的相互作用,如神经科学和基因组学,本质上是非线性的。在这些情况下,使用线性模型可能会导致对格兰杰因果关系的不一致估计。我们通过应用带有稀疏性诱导惩罚的结构多层感知器(MLP)或递归神经网络(RNN)来提出一类非线性方法。通过鼓励特定的权重集为零,特别是通过使用凸组套索惩罚,我们可以提取格兰杰因果结构。为了进一步与传统方法形成对比,我们的框架自然可以使我们通过 RNN 或通过 MLP 中的自动滞后选择来有效地捕捉序列之间的远程依赖关系。我们表明,我们的神经格兰杰因果关系方法在 DREAM3 挑战数据上优于最先进的非线性格兰杰因果关系方法。该数据包含具有有限时间点的非线性基因表达和调控时间序列。我们在这个具有挑战性的数据集上取得的成功为深度学习在超越大数据集预测的情况下如何有用提供了一个有力的例子。我们还在人类运动捕捉数据集检测非线性相互作用的方法中说明了我们的方法。