Suppr超能文献

使用FHIR和HL7临床质量语言进行分子引导的癌症临床试验匹配:概念验证

Molecularly-Guided Cancer Clinical Trial Matching using FHIR and HL7 Clinical Quality Language: A Proof of Concept.

作者信息

Dolin Robert H, Arafat Waddah, Heale Bret S E, Shenvi Edna, Chamala Srikar

机构信息

Elimu Informatics, El Cerrito, CA.

UT Southwestern, Dallas, TX.

出版信息

AMIA Annu Symp Proc. 2025 May 22;2024:359-367. eCollection 2024.

Abstract

: Clinical trials play a crucial role in precision cancer care. Patients generally learn of trials from their physician, and physician recognition of potential matches can be enhanced through decision support tools. But automated trial matching remains challenging, particularly for molecular eligibility criteria. : We assessed the feasibility of FHIR Genomics plus CQL to enable trial matching, particularly for molecular criteria. : We developed a prototype that included (1) encoded trial criteria in CQL; (2) synthetic patient clinical and genomic data; (3) trial eligibility computation. : We found that even complex molecular eligibility criteria can be represented in CQL given that the semantics of a criterion are formalized in base FHIR specifications. The proof of concept "CQL for Clinical Trials Matching" is available at [https://elimu.io/downloads/]. : Proof of concept work suggests FHIR and CQL as viable options for enhancing clinical trial matching.

摘要

临床试验在精准癌症治疗中发挥着关键作用。患者通常从其医生处了解到试验信息,并且通过决策支持工具可以增强医生对潜在匹配情况的识别。但自动化试验匹配仍然具有挑战性,尤其是对于分子入选标准而言。

我们评估了FHIR基因组学加CQL实现试验匹配的可行性,特别是对于分子标准。

我们开发了一个原型,其中包括:(1)用CQL编码的试验标准;(2)合成的患者临床和基因组数据;(3)试验资格计算。

我们发现,鉴于标准的语义在基础FHIR规范中已形式化,即使是复杂的分子入选标准也可以用CQL表示。概念验证“用于临床试验匹配的CQL”可在[https://elimu.io/downloads/]获取。

概念验证工作表明,FHIR和CQL是增强临床试验匹配的可行选择。

相似文献

8
Implementation of a HL7-CQL Engine Using the Graph Database Neo4J.使用图数据库Neo4J实现HL7-CQL引擎
Stud Health Technol Inform. 2019 Sep 3;267:46-51. doi: 10.3233/SHTI190804.

本文引用的文献

5
Strategies to Advance Equity in Cancer Clinical Trials.推进癌症临床试验公平性的策略。
Am Soc Clin Oncol Educ Book. 2022 Apr;42:1-11. doi: 10.1200/EDBK_350565.
10
SPDI: data model for variants and applications at NCBI.SPDI:NCBI 变体和应用程序的数据模型。
Bioinformatics. 2020 Mar 1;36(6):1902-1907. doi: 10.1093/bioinformatics/btz856.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验