Dolin Robert, Heale Bret S E, Gupta Rohan, Alvarez Carla, Aronson Justin, Boxwala Aziz, Gothi Shaileshbhai R, Husami Ammar, Shalaby James, Babb Lawrence, Wagner Alex, Chamala Srikar
Elimu Informatics El Cerrito California USA.
Humanized Health Consulting Salt Lake City Utah USA.
Learn Health Syst. 2023 Aug 30;7(4):e10385. doi: 10.1002/lrh2.10385. eCollection 2023 Oct.
Variant annotation is a critical component in next-generation sequencing, enabling a sequencing lab to comb through a sea of variants in order to hone in on those likely to be most significant, and providing clinicians with necessary context for decision-making. But with the rapid evolution of genomics knowledge, reported annotations can quickly become out-of-date. Under the ONC Sync for Genes program, our team sought to standardize the sharing of dynamically annotated variants (e.g., variants annotated on demand, based on current knowledge). The computable biomedical knowledge artifacts that were developed enable a clinical decision support (CDS) application to surface up-to-date annotations to clinicians.
The work reported in this article relies on the Health Level 7 Fast Healthcare Interoperability Resources (FHIR) Genomics and Global Alliance for Genomics and Health (GA4GH) Variant Annotation (VA) standards. We developed a CDS pipeline that dynamically annotates patient's variants through an intersection with current knowledge and serves up the FHIR-encoded variants and annotations (diagnostic and therapeutic implications, molecular consequences, population allele frequencies) via FHIR Genomics Operations. ClinVar, CIViC, and PharmGKB were used as knowledge sources, encoded as per the GA4GH VA specification.
Primary public artifacts from this project include a GitHub repository with all source code, a Swagger interface that allows anyone to visualize and interact with the code using only a web browser, and a backend database where all (synthetic and anonymized) patient data and knowledge are housed.
We found that variant annotation varies in complexity based on the variant type, and that various bioinformatics strategies can greatly improve automated annotation fidelity. More importantly, we demonstrated the feasibility of an ecosystem where genomic knowledge bases have standardized knowledge (e.g., based on the GA4GH VA spec), and CDS applications can dynamically leverage that knowledge to provide real-time decision support, based on current knowledge, to clinicians at the point of care.
变异注释是下一代测序中的关键组成部分,使测序实验室能够在大量变异中进行筛选,以确定那些可能最为重要的变异,并为临床医生提供决策所需的背景信息。但是随着基因组学知识的快速发展,报告的注释可能很快就会过时。在ONC基因同步计划下,我们的团队致力于规范动态注释变异(例如,根据当前知识按需注释的变异)的共享。所开发的可计算生物医学知识工件使临床决策支持(CDS)应用程序能够向临床医生提供最新的注释。
本文报道的工作依赖于健康级别7快速医疗保健互操作性资源(FHIR)基因组学和全球基因组学与健康联盟(GA4GH)变异注释(VA)标准。我们开发了一个CDS管道,通过与当前知识交叉来动态注释患者的变异,并通过FHIR基因组学操作提供FHIR编码的变异和注释(诊断和治疗意义、分子后果、群体等位基因频率)。ClinVar、CIViC和PharmGKB被用作知识来源,并根据GA4GH VA规范进行编码。
该项目的主要公共工件包括一个包含所有源代码的GitHub存储库、一个Swagger接口,任何人都可以仅使用网络浏览器来可视化并与代码进行交互,以及一个后端数据库,其中存储了所有(合成和匿名的)患者数据和知识。
我们发现变异注释的复杂性因变异类型而异,并且各种生物信息学策略可以极大地提高自动注释的准确性。更重要的是,我们证明了一个生态系统的可行性,在这个生态系统中,基因组知识库具有标准化的知识(例如,基于GA4GH VA规范),并且CDS应用程序可以动态利用这些知识,根据当前知识在护理点为临床医生提供实时决策支持。