Suppr超能文献

通过基于人口统计学的表型攻击率将HIV阳性患者自动分配到表型组中。

Automating assignment of HIV+ patients into phenogroups from demography bound phenotype attack rates.

作者信息

Williams Nick

机构信息

The Lister Hill National Center for Biomedical Communications, National Library of Medicine, USA.

出版信息

AMIA Annu Symp Proc. 2025 May 22;2024:1235-1244. eCollection 2024.

Abstract

Evidence based medicine and health data for policy should update statistical data modeling methods to take advantage of at-scale data. One challenge with at-scale data is information segmentation for clinical presentation discovery and cohort assignment. We use gradient boosting machine (GBM) to segment 94,379,175,015 diagnostic clinical events attributable to 283,632,789 Centers for Medicare and Medicaid Services beneficiaries over 22 observation years. Diagnostic events were aggregated into attack rates by demography and Phenome-wide association studies (PheWas) codes. Resulting attack rates were then segmented within a user defined clinical status of interest, in this case HIV status. 1,753,647 HIV+ beneficiaries were considered. The GBM model assigned 19,651,408 PheWas attack rates from 69,133,296 ICD attack rates into phenogroups/nodes.

摘要

基于证据的医学和用于政策制定的健康数据应更新统计数据建模方法,以利用大规模数据。大规模数据面临的一个挑战是用于临床表现发现和队列分配的信息分割。我们使用梯度提升机(GBM)对94379175015个诊断临床事件进行分割,这些事件归因于283632789名医疗保险和医疗补助服务中心的受益人在22个观察年中的情况。诊断事件按人口统计学和全表型关联研究(PheWas)代码汇总为发病率。然后,在用户定义的感兴趣的临床状态(在本例中为HIV状态)内对得出的发病率进行分割。研究考虑了1753647名HIV阳性受益人。GBM模型将来自69133296个ICD发病率的19651408个PheWas发病率分配到表型组/节点中。

相似文献

本文引用的文献

5
Phenome-Wide Association Studies.全表型组关联研究
JAMA. 2022 Jan 4;327(1):75-76. doi: 10.1001/jama.2021.20356.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验