Suppr超能文献

我们对医疗保健领域观察性研究结果的信心有多少:一项基准研究。

How Confident Are We about Observational Findings in Healthcare: A Benchmark Study.

作者信息

Schuemie Martijn J, Cepeda M Soledad, Suchard Marc A, Yang Jianxiao, Tian Yuxi, Schuler Alejandro, Ryan Patrick B, Madigan David, Hripcsak George

机构信息

Observational Health Data Sciences and Informatics.

Epidemiology Analytics, Janssen Research and Development.

出版信息

Harv Data Sci Rev. 2020;2(1). doi: 10.1162/99608f92.147cc28e. Epub 2020 Jan 31.

Abstract

Healthcare professionals increasingly rely on observational healthcare data, such as administrative claims and electronic health records, to estimate the causal effects of interventions. However, limited prior studies raise concerns about the real-world performance of the statistical and epidemiological methods that are used. We present the "OHDSI Methods Benchmark" that aims to evaluate the performance of effect estimation methods on real data. The benchmark comprises a gold standard, a set of metrics, and a set of open source software tools. The gold standard is a collection of real negative controls (drug-outcome pairs where no causal effect appears to exist) and synthetic positive controls (drug-outcome pairs that augment negative controls with simulated causal effects). We apply the benchmark using four large healthcare databases to evaluate methods commonly used in practice: the new-user cohort, self-controlled cohort, case-control, case-crossover, and self-controlled case series designs. The results confirm the concerns about these methods, showing that for most methods the operating characteristics deviate considerably from nominal levels. For example, in most contexts, only half of the 95% confidence intervals we calculated contain the corresponding true effect size. We previously developed an "empirical calibration" procedure to restore these characteristics and we also evaluate this procedure. While no one method dominates, self-controlled methods such as the empirically calibrated self-controlled case series perform well across a wide range of scenarios.

摘要

医疗保健专业人员越来越依赖观察性医疗保健数据,如行政索赔和电子健康记录,来估计干预措施的因果效应。然而,先前有限的研究引发了对所使用的统计和流行病学方法在现实世界中表现的担忧。我们提出了“OHDSI方法基准”,旨在评估效应估计方法在真实数据上的表现。该基准包括一个金标准、一组指标和一组开源软件工具。金标准是一组真实的阴性对照(似乎不存在因果效应的药物-结局对)和合成阳性对照(通过模拟因果效应增强阴性对照的药物-结局对)。我们使用四个大型医疗保健数据库应用该基准,以评估实践中常用的方法:新用户队列、自我对照队列、病例对照、病例交叉和自我对照病例系列设计。结果证实了对这些方法的担忧,表明对于大多数方法,操作特征与标称水平有很大偏差。例如,在大多数情况下,我们计算的95%置信区间中只有一半包含相应的真实效应大小。我们之前开发了一种“经验校准”程序来恢复这些特征,并且我们也评估了这个程序。虽然没有一种方法占主导地位,但自我对照方法,如经验校准的自我对照病例系列,在广泛的场景中表现良好。

相似文献

引用本文的文献

本文引用的文献

9
Understanding and misunderstanding randomized controlled trials.理解与误解随机对照试验。
Soc Sci Med. 2018 Aug;210:2-21. doi: 10.1016/j.socscimed.2017.12.005. Epub 2017 Dec 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验