He Longjie, Shao Yiting, Li Shibin, Nie Yihang, Chu Ying, Feng Guo, Liu Xuancheng, Li Qingying, Luo Dan, Wang Xin, Chen Zhongwei
South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China.
Institute of Carbon Neutrality, Zhejiang Wanli University, China, Ningbo, 315100.
Angew Chem Int Ed Engl. 2025 Jul 28;64(31):e202507222. doi: 10.1002/anie.202507222. Epub 2025 Jun 6.
The development of high-voltage solid-state lithium-metal batteries (HVSSLMBs) is severely limited by unstable ion transport, insufficient oxidative stability, and poor electrode-electrolyte interface (EEI) compatibility of conventional solid electrolytes. Herein, we report a topologically entangled polymer electrolyte featuring ionophilic-protonation dual side chains. The ionophilic functional groups on these side chains provide abundant coordination sites, significantly enhancing Li transport, whereas exposed carboxyl (─COOH) groups induce protonation on the cathode surface, effectively suppressing transition metal (TM) ion migration. The topologically entangled polymer network ensures uniform electric-field distribution, mitigates lattice-oxygen release, and maintains continuous Li conduction. As a result, this electrolyte achieves a high room-temperature ionic conductivity of 0.81 mS cm and an oxidation stability up to 4.9 V. Moreover, the in situ formed inorganic species (LiF, LiO, and LiCO) stabilized the EEI, enabling stable cycling of the symmetric cell for 2000 h. Batteries assembled with a high-voltage LiNiMnCoO (LRMO) cathode retain a specific capacity of 217.37 mAh g after 250 cycles, and Ah-level pouch cell utilizing LiNiCoMnO (NCM811) cathode exhibits stable cycling performance over 150 cycles. These findings demonstrate the great promise of this strategy for the development of high-energy-density lithium-metal batteries with outstanding cycling performance and long-term stability.
高压固态锂金属电池(HVSSLMBs)的发展受到传统固体电解质离子传输不稳定、氧化稳定性不足以及电极-电解质界面(EEI)兼容性差的严重限制。在此,我们报道了一种具有亲离子-质子化双侧链的拓扑缠结聚合物电解质。这些侧链上的亲离子官能团提供了丰富的配位位点,显著增强了锂的传输,而暴露的羧基(─COOH)基团在阴极表面诱导质子化,有效抑制了过渡金属(TM)离子的迁移。拓扑缠结的聚合物网络确保了均匀的电场分布,减轻了晶格氧的释放,并维持了连续的锂传导。因此,这种电解质实现了0.81 mS cm的高室温离子电导率和高达4.9 V的氧化稳定性。此外,原位形成的无机物种(LiF、LiO和LiCO)稳定了EEI,使对称电池能够稳定循环2000小时。采用高压LiNiMnCoO(LRMO)阴极组装的电池在250次循环后保持217.37 mAh g的比容量,而使用LiNiCoMnO(NCM811)阴极的Ah级软包电池在150次循环中表现出稳定的循环性能。这些发现证明了该策略在开发具有出色循环性能和长期稳定性的高能量密度锂金属电池方面具有巨大潜力。