Suppr超能文献

硅氧分子工程增强了高负载和高压层状正极-锂金属电池的正负极界面稳定性。

Si─O Molecular Engineering Enhances Cathode-Anode Interface Stability for High-Loading and High-Voltage Layered Cathode-Lithium Metal Batteries.

作者信息

Yang Shangjuan, Lao Zhoujie, Han Zhuo, Su Hai, Xiao Guanyou, Zhou Guangmin, Zhang Danfeng, He Yan-Bing

机构信息

Shenzhen All-Solid-State Lithium Battery Electrolyte Engineering Research Center, Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China.

School of Energy and Power Engineering, North University of China, Taiyuan, 030051, P.R. China.

出版信息

Angew Chem Int Ed Engl. 2025 Aug 11;64(33):e202508008. doi: 10.1002/anie.202508008. Epub 2025 Jun 29.

Abstract

Nickel-rich layered cathodes and lithium metal anode are promising for the next generation high-energy-density batteries. However, the unstable electrode-electrolyte interface induces structural degradation and battery failure under high-voltage and high-loading conditions. Herein, we report a fluorosilane-coupled electrolyte stabilizer with 1H, 1H, 2H, 2H-perfluorooctyltrimethoxysilane (PFOTMS), which presents higher adsorption energy with LiNiCoMnO cathode than solvents through the conjugation of Si─O bonds and therefore is oxidized on its surface to derive an interfacial layer rich in F and Si─O species. This architecture effectively stabilizes the cathode structure, suppresses transition metal migration, and promotes Li conduction and uniform deposition, which also suppresses the side reactions of electrolyte with both cathode and anode. This unique interfacial stabilization mechanism enables the Li||NCM811 battery to achieve a capacity retention rate of 80.8% after 600 cycles at 4.7 V. The Li||LiCoO cell with a high mass loading of 20 mg cm achieves a remarkably high-capacity retention of 92.79% after 500 cycles at 4.4 V. This work proposes an interfacial stabilization that overcomes high-voltage limitations in practical nickel-rich cathode/lithium metal batteries.

摘要

富镍层状阴极和锂金属阳极在下一代高能量密度电池方面颇具前景。然而,在高压和高负载条件下,不稳定的电极-电解质界面会导致结构退化和电池失效。在此,我们报道了一种由1H,1H,2H,2H-全氟辛基三甲氧基硅烷(PFOTMS)构成的氟硅烷偶联电解质稳定剂,通过Si─O键的共轭作用,其与LiNiCoMnO阴极的吸附能高于溶剂,因此在其表面被氧化,从而形成富含F和Si─O物种的界面层。这种结构有效地稳定了阴极结构,抑制了过渡金属迁移,并促进了Li传导和均匀沉积,同时也抑制了电解质与阴极和阳极的副反应。这种独特的界面稳定机制使Li||NCM811电池在4.7 V下循环600次后容量保持率达到80.8%。具有20 mg cm高质量负载的Li||LiCoO电池在4.4 V下循环500次后实现了高达92.79%的高容量保持率。这项工作提出了一种界面稳定方法,克服了实际富镍阴极/锂金属电池中的高压限制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验