Suppr超能文献

肾细胞癌中的多组学:精准医学的现状与未来方向

Multiomics in Renal Cell Carcinoma: Current Landscape and Future Directions for Precision Medicine.

作者信息

Gavi Filippo, Sighinolfi Maria Chiara, Pallotta Giuseppe, Assumma Simone, Panio Enrico, Fettucciari Daniele, Silvestri Antonio, Russo Pierluigi, Bientinesi Riccardo, Foschi Nazario, Turri Filippo, Carbonara Umberto, Ciccarese Chiara, Iacovelli Roberto, Nero Camilla, Rocco Bernardo

机构信息

Department of Urology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, 00168, Italy.

Unit of Urology, Policlinico di Bari, Bari, Italy.

出版信息

Curr Urol Rep. 2025 May 26;26(1):44. doi: 10.1007/s11934-025-01276-2.

Abstract

PURPOSE OF REVIEW

Renal cell carcinoma (RCC) is a prevalent and increasingly diagnosed malignancy associated with high mortality and recurrence rates. Traditional diagnostic and therapeutic approaches have limitations due to the disease's molecular heterogeneity. This review aims to explore how the integration of omics sciences-genomics, transcriptomics, proteomics, and metabolomics-can enhance the diagnosis, prognosis, and treatment of RCC.

RECENT FINDINGS

Genomic analyses have uncovered critical mutations, including VHL, PBRM1, and BAP1, which support improved risk stratification and the development of targeted therapies. Transcriptomic and spatial transcriptomic studies have provided deeper insights into RCC heterogeneity and tumor microenvironment dynamics. Proteomic investigations have revealed potential biomarkers, while metabolomic approaches have highlighted RCC-specific metabolic shifts. Despite these advancements, several challenges persist, including intratumoral heterogeneity, difficulties in multi-omics data integration, and the limited clinical validation of biomarkers. Omics-driven approaches hold significant promise for advancing precision medicine in RCC. These technologies can facilitate earlier diagnosis, guide individualized therapies, and enhance prognostic evaluations. Future research must focus on validating multi-omic biomarkers and leveraging artificial intelligence to manage complex datasets, thereby supporting more informed clinical decision-making and personalized treatment strategies.

摘要

综述目的

肾细胞癌(RCC)是一种常见且诊断率日益上升的恶性肿瘤,死亡率和复发率高。由于该疾病的分子异质性,传统的诊断和治疗方法存在局限性。本综述旨在探讨组学科学(基因组学、转录组学、蛋白质组学和代谢组学)的整合如何能够提高肾细胞癌的诊断、预后评估和治疗水平。

最新发现

基因组分析发现了关键突变,包括VHL、PBRM1和BAP1,这有助于改善风险分层和开发靶向治疗。转录组学和空间转录组学研究对肾细胞癌的异质性和肿瘤微环境动态有了更深入的了解。蛋白质组学研究揭示了潜在的生物标志物,而代谢组学方法突出了肾细胞癌特异性的代谢变化。尽管取得了这些进展,但仍存在一些挑战,包括肿瘤内异质性、多组学数据整合困难以及生物标志物的临床验证有限。组学驱动的方法在推进肾细胞癌的精准医学方面具有重大前景。这些技术可以促进早期诊断、指导个体化治疗并加强预后评估。未来的研究必须专注于验证多组学生物标志物并利用人工智能来管理复杂数据集,从而支持更明智的临床决策和个性化治疗策略。

相似文献

5
Omics sciences and precision medicine in kidney cancer.肾癌中的组学科学与精准医学。
Clin Ter. 2023 Nov-Dec;174(Suppl 2(6)):46-54. doi: 10.7417/CT.2023.2471.

本文引用的文献

2
Sample Site Impacts RNA Biomarkers for Renal Cell Carcinoma.样本部位影响肾细胞癌的RNA生物标志物。
Eur Urol. 2025 Jan;87(1):79-83. doi: 10.1016/j.eururo.2024.09.004. Epub 2024 Oct 2.
7
Predictive and prognostic biomarkers in urological tumours.泌尿系统肿瘤的预测和预后生物标志物。
Pathology. 2024 Mar;56(2):228-238. doi: 10.1016/j.pathol.2023.10.016. Epub 2023 Dec 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验