Suppr超能文献

用于胶质母细胞瘤患者预后分层的多模态可解释人工智能

Multimodal Explainable Artificial Intelligence for Prognostic Stratification of Patients With Glioblastoma.

作者信息

Baheti Bhakti, Rai Sunny, Innani Shubham, Mehdiratta Garv, Bell William Robert, Guntuku Sharath Chandra, Nasrallah MacLean P, Bakas Spyridon

机构信息

Division of Computational Pathology, Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana.

Department of Computer and Information Science, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania; Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, Pennsylvania.

出版信息

Mod Pathol. 2025 May 24;38(9):100797. doi: 10.1016/j.modpat.2025.100797.

Abstract

Glioblastoma (GBM) is the most common and aggressive malignant adult tumor of the central nervous system, with a grim prognosis and heterogeneous morphologic and molecular profiles. Since the adoption of the current standard-of-care treatment in 2005, no substantial prognostic improvement has been noticed. In this study, we seek the identification of prognostically relevant GBM characteristics from routinely acquired hematoxylin and eosin-stained whole slide images (WSIs) and clinical data, which when integrated via advanced computational methods could yield improved patient prognostic stratification and hence optimize clinical decision making and patient management. The proposed WSI analysis capitalizes on a comprehensive curation of apparent artifactual content and an interpretability mechanism via a weakly supervised attention-based multiple-instance learning approach that further utilizes clustering to constrain the search space. Patterns automatically identified by our approach as of high prognostic value classify each WSI as representative of short or long survivors. Further assessments of the prognostic relevance of the associated clinical patient data are performed both in isolation and in an integrated manner, using XGBoost and SHapley Additive exPlanations. The multimodal integration of WSI with clinical data yields enhanced stratification performance when compared with using either one of the modalities. Identifying tumor morphologic and clinical patterns associated with short and long survival will enable the clinical neuropathologist to provide additional relevant prognostic information to the treating team and suggest avenues of biological investigation for further understanding and potentially treating GBM.

摘要

胶质母细胞瘤(GBM)是成人中枢神经系统中最常见且侵袭性最强的恶性肿瘤,预后严峻,形态学和分子特征各异。自2005年采用当前的标准治疗方案以来,尚未观察到显著的预后改善。在本研究中,我们试图从常规获取的苏木精和伊红染色的全切片图像(WSIs)及临床数据中识别与预后相关的GBM特征,通过先进的计算方法将这些特征整合起来,有望改善患者的预后分层,从而优化临床决策和患者管理。拟议的WSI分析利用对明显人为因素内容的全面整理以及一种基于弱监督注意力的多实例学习方法的可解释机制,该方法进一步利用聚类来限制搜索空间。我们的方法自动识别出的具有高预后价值的模式将每个WSI分类为短生存期或长生存期患者的代表。使用XGBoost和SHapley加性解释法,分别对相关临床患者数据的预后相关性进行单独评估和综合评估。与单独使用任何一种模式相比,WSI与临床数据的多模态整合可提高分层性能。识别与短生存期和长生存期相关的肿瘤形态学和临床模式,将使临床神经病理学家能够为治疗团队提供额外的相关预后信息,并为进一步了解和潜在治疗GBM提出生物学研究途径。

相似文献

1
Multimodal Explainable Artificial Intelligence for Prognostic Stratification of Patients With Glioblastoma.
Mod Pathol. 2025 May 24;38(9):100797. doi: 10.1016/j.modpat.2025.100797.
2
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
3
Impact of residual disease as a prognostic factor for survival in women with advanced epithelial ovarian cancer after primary surgery.
Cochrane Database Syst Rev. 2022 Sep 26;9(9):CD015048. doi: 10.1002/14651858.CD015048.pub2.
4
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.
Health Technol Assess. 2006 Sep;10(34):iii-iv, ix-xi, 1-204. doi: 10.3310/hta10340.
5
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?
Clin Orthop Relat Res. 2024 Sep 1;482(9):1710-1721. doi: 10.1097/CORR.0000000000003030. Epub 2024 Mar 22.
6
Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation.
Cochrane Database Syst Rev. 2018 Jan 22;1(1):CD011551. doi: 10.1002/14651858.CD011551.pub2.
9
Neuraminidase inhibitors for preventing and treating influenza in healthy adults and children.
Cochrane Database Syst Rev. 2012 Jan 18;1:CD008965. doi: 10.1002/14651858.CD008965.pub3.
10
Treatment options for progression or recurrence of glioblastoma: a network meta-analysis.
Cochrane Database Syst Rev. 2021 May 4;5(1):CD013579. doi: 10.1002/14651858.CD013579.pub2.

引用本文的文献

1
Interpretable artificial intelligence based determination of glioma IDH mutation status directly from histology slides.
Neurooncol Adv. 2025 Jul 11;7(1):vdaf140. doi: 10.1093/noajnl/vdaf140. eCollection 2025 Jan-Dec.

本文引用的文献

2
Multi-scale signaling and tumor evolution in high-grade gliomas.
Cancer Cell. 2024 Jul 8;42(7):1217-1238.e19. doi: 10.1016/j.ccell.2024.06.004.
4
A review of deep learning-based information fusion techniques for multimodal medical image classification.
Comput Biol Med. 2024 Jul;177:108635. doi: 10.1016/j.compbiomed.2024.108635. Epub 2024 May 22.
6
Sex differences in glioblastoma response to treatment: Impact of MGMT methylation.
Neurooncol Adv. 2024 Mar 1;6(1):vdae031. doi: 10.1093/noajnl/vdae031. eCollection 2024 Jan-Dec.
7
Metrics reloaded: recommendations for image analysis validation.
Nat Methods. 2024 Feb;21(2):195-212. doi: 10.1038/s41592-023-02151-z. Epub 2024 Feb 12.
8
Understanding metric-related pitfalls in image analysis validation.
Nat Methods. 2024 Feb;21(2):182-194. doi: 10.1038/s41592-023-02150-0. Epub 2024 Feb 12.
9
Comparative analysis of deeply phenotyped GBM cohorts of 'short-term' and 'long-term' survivors.
J Neurooncol. 2023 Jun;163(2):327-338. doi: 10.1007/s11060-023-04341-3. Epub 2023 May 26.
10
Multimodal deep learning to predict prognosis in adult and pediatric brain tumors.
Commun Med (Lond). 2023 Mar 29;3(1):44. doi: 10.1038/s43856-023-00276-y.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验