Suppr超能文献

用于胶质母细胞瘤患者预后分层的多模态可解释人工智能

Multimodal Explainable Artificial Intelligence for Prognostic Stratification of Patients With Glioblastoma.

作者信息

Baheti Bhakti, Rai Sunny, Innani Shubham, Mehdiratta Garv, Bell William Robert, Guntuku Sharath Chandra, Nasrallah MacLean P, Bakas Spyridon

机构信息

Division of Computational Pathology, Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana.

Department of Computer and Information Science, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania; Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, Pennsylvania.

出版信息

Mod Pathol. 2025 May 24;38(9):100797. doi: 10.1016/j.modpat.2025.100797.

Abstract

Glioblastoma (GBM) is the most common and aggressive malignant adult tumor of the central nervous system, with a grim prognosis and heterogeneous morphologic and molecular profiles. Since the adoption of the current standard-of-care treatment in 2005, no substantial prognostic improvement has been noticed. In this study, we seek the identification of prognostically relevant GBM characteristics from routinely acquired hematoxylin and eosin-stained whole slide images (WSIs) and clinical data, which when integrated via advanced computational methods could yield improved patient prognostic stratification and hence optimize clinical decision making and patient management. The proposed WSI analysis capitalizes on a comprehensive curation of apparent artifactual content and an interpretability mechanism via a weakly supervised attention-based multiple-instance learning approach that further utilizes clustering to constrain the search space. Patterns automatically identified by our approach as of high prognostic value classify each WSI as representative of short or long survivors. Further assessments of the prognostic relevance of the associated clinical patient data are performed both in isolation and in an integrated manner, using XGBoost and SHapley Additive exPlanations. The multimodal integration of WSI with clinical data yields enhanced stratification performance when compared with using either one of the modalities. Identifying tumor morphologic and clinical patterns associated with short and long survival will enable the clinical neuropathologist to provide additional relevant prognostic information to the treating team and suggest avenues of biological investigation for further understanding and potentially treating GBM.

摘要

胶质母细胞瘤(GBM)是成人中枢神经系统中最常见且侵袭性最强的恶性肿瘤,预后严峻,形态学和分子特征各异。自2005年采用当前的标准治疗方案以来,尚未观察到显著的预后改善。在本研究中,我们试图从常规获取的苏木精和伊红染色的全切片图像(WSIs)及临床数据中识别与预后相关的GBM特征,通过先进的计算方法将这些特征整合起来,有望改善患者的预后分层,从而优化临床决策和患者管理。拟议的WSI分析利用对明显人为因素内容的全面整理以及一种基于弱监督注意力的多实例学习方法的可解释机制,该方法进一步利用聚类来限制搜索空间。我们的方法自动识别出的具有高预后价值的模式将每个WSI分类为短生存期或长生存期患者的代表。使用XGBoost和SHapley加性解释法,分别对相关临床患者数据的预后相关性进行单独评估和综合评估。与单独使用任何一种模式相比,WSI与临床数据的多模态整合可提高分层性能。识别与短生存期和长生存期相关的肿瘤形态学和临床模式,将使临床神经病理学家能够为治疗团队提供额外的相关预后信息,并为进一步了解和潜在治疗GBM提出生物学研究途径。

相似文献

本文引用的文献

7
Metrics reloaded: recommendations for image analysis validation.重新加载指标:图像分析验证的建议。
Nat Methods. 2024 Feb;21(2):195-212. doi: 10.1038/s41592-023-02151-z. Epub 2024 Feb 12.
8
Understanding metric-related pitfalls in image analysis validation.理解图像分析验证中与度量相关的陷阱。
Nat Methods. 2024 Feb;21(2):182-194. doi: 10.1038/s41592-023-02150-0. Epub 2024 Feb 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验