Suppr超能文献

使用环形一维光子晶体的高灵敏度盐度传感

Highly sensitive salinity sensing using annular one-dimensional photonic crystals.

作者信息

Sayed Hassan, Ahmed Ashour M, Hajjiah Ali, Abdelkawy M A, Aly Arafa H

机构信息

TH-PPM Group, Physics Department, Faculty of Sciences, Beni-Suef University, Beni Suef, 62514, Egypt.

Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Saudi Arabia.

出版信息

Sci Rep. 2025 May 26;15(1):18337. doi: 10.1038/s41598-025-02241-2.

Abstract

This study explores annular one-dimensional (1D) photonic crystals (PCs) in detail as potentially useful instruments for applications involving salinity detection. The distinctive configuration of annular 1D PCs facilitates the containment and manipulation of light within a concise and unified framework, facilitating the creation of compact and portable sensing apparatus suitable for on-site applications and real-time monitoring. Unlike conventional planar and texturing-based PC sensors, the annular configuration enhances light confinement and defect mode engineering, leading to superior sensing performance. The study describes the simulation process that uses the COMSOL Multiphysics technique and the Finite Element Method (FEM) to create annular 1D PCs, underscoring the criticality of precise management of layer thickness and uniformity. Wherein, the structure of a 1D- annular PC is created as [Formula: see text], since A represents Silicon dioxide ([Formula: see text] and B signifies Titanium dioxide ([Formula: see text]) with material thicknesses set at 850 nm for each. D represents the central defect layer from saline water, which equals 3400 nm, and N equals 5. Hence, we achieve an exceptional sensitivity of 1910.6 nm/RIU, surpassing most reported 1D-PC salinity sensors. Also, the materials used in our design ([Formula: see text] are highly chemically and mechanically stable which resistant to etching in the saline water. Furthermore, we discuss the feasibility of fabricating the proposed sensor using advanced nanofabrication techniques, ensuring its practical implementation in environmental and biomedical monitoring applications.

摘要

本研究详细探讨了环形一维(1D)光子晶体(PCs),将其作为盐度检测应用中潜在的有用工具。环形一维光子晶体独特的结构便于在简洁统一的框架内对光进行限制和操控,有助于制造适用于现场应用和实时监测的紧凑便携式传感设备。与传统的基于平面和纹理的光子晶体传感器不同,环形结构增强了光限制和缺陷模式工程,从而带来卓越的传感性能。该研究描述了使用COMSOL Multiphysics技术和有限元方法(FEM)创建环形一维光子晶体的模拟过程,强调了精确控制层厚度和均匀性的重要性。其中,一维环形光子晶体的结构创建为[公式:见正文],因为A代表二氧化硅([公式:见正文]),B表示二氧化钛([公式:见正文]),每种材料的厚度设定为850 nm。D代表来自盐水的中心缺陷层,等于3400 nm,N等于5。因此,我们实现了1910.6 nm/RIU的卓越灵敏度,超过了大多数已报道的一维光子晶体盐度传感器。此外,我们设计中使用的材料([公式:见正文])具有高度的化学和机械稳定性,能抵抗盐水蚀刻。此外,我们还讨论了使用先进的纳米制造技术制造所提出传感器的可行性,以确保其在环境和生物医学监测应用中的实际应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/266c/12106646/3bf0b1aa5319/41598_2025_2241_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验