Alqarni Mohammed, Alqarni Ali
Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
Sci Rep. 2025 May 26;15(1):18444. doi: 10.1038/s41598-025-03803-0.
Molecular diffusion of drugs is of major importance for development and understanding drug delivery systems. Indeed, the main phenomenon which is controlling the rate of release is molecular diffusion which can be controlled via different phenomena such as interactions with the drug carrier and solution. In this work, we developed a novel hybrid model based on mass transfer and machine learning for predicting drug diffusion in a 3D space. The mass transfer equation including diffusion is solved in the domain and then the data is extracted for building machine learning models. The present study presents the findings of an analysis conducted with the objective of constructing precise regression models for the prediction of chemical species concentration (C) for a drug diffusion through a three-dimensional space, utilizing coordinates (x, y, z). The dataset comprises over 22,000 data points, with each point containing the coordinates ([Formula: see text]) and the corresponding concentration (C) in mol/m³. We employ three tree-based ensemble models: Kernel Ridge Regression (KRR), [Formula: see text]-Support Vector Regression ([Formula: see text]-SVR), and Multi Linear Regression (MLR) for modeling the relationship between spatial coordinates and the concentration. Hyperparameter optimization is performed using the Bacterial Foraging Optimization Algorithm (BFO) to fine-tune the models. The results reveal that [Formula: see text]-SVR has the highest performance with a score of 0.99777 in terms of R, followed by KRR with an R score of 0.94296, and MLR with an R value of 0.71692. Additionally, [Formula: see text]-SVR exhibits the lowest RMSE and MAE, showing excellent predictive accuracy compared to KRR and MLR. Overall, our analysis demonstrates the effectiveness of employing tree-based ensemble models coupled with BFO for accurately predicting chemical concentrations in three-dimensional space, with [Formula: see text]-SVR emerging as the most promising model for this task. These findings have implications for various applications such as environmental monitoring, pollutant dispersion modeling, and chemical process optimization.
药物的分子扩散对于药物递送系统的开发和理解至关重要。实际上,控制释放速率的主要现象是分子扩散,它可以通过与药物载体和溶液等不同现象来控制。在这项工作中,我们开发了一种基于传质和机器学习的新型混合模型,用于预测药物在三维空间中的扩散。在该区域内求解包含扩散的传质方程,然后提取数据以构建机器学习模型。本研究展示了一项分析的结果,该分析旨在构建精确的回归模型,用于预测药物在三维空间中扩散时化学物质浓度(C),利用坐标(x,y,z)。数据集包含超过22,000个数据点,每个点包含坐标([公式:见原文])以及相应的浓度(C),单位为mol/m³。我们采用三种基于树的集成模型:核岭回归(KRR)、[公式:见原文]-支持向量回归([公式:见原文]-SVR)和多元线性回归(MLR)来对空间坐标与浓度之间的关系进行建模。使用细菌觅食优化算法(BFO)进行超参数优化,以微调模型。结果表明,[公式:见原文]-SVR性能最高,R值为0.99777,其次是KRR,R值为0.94296,MLR的R值为0.71692。此外,[公式:见原文]-SVR的均方根误差(RMSE)和平均绝对误差(MAE)最低,与KRR和MLR相比,显示出优异的预测准确性。总体而言,我们的分析证明了使用基于树的集成模型结合BFO来准确预测三维空间中化学浓度的有效性,[公式:见原文]-SVR成为这项任务中最有前景的模型。这些发现对环境监测、污染物扩散建模和化学过程优化等各种应用具有重要意义。