Suppr超能文献

可解释的机器学习用于预测合并创伤性脑损伤和骨折的多发伤患者的最佳手术时机,以降低术后感染风险。

Interpretable machine learning for predicting optimal surgical timing in polytrauma patients with TBI and fractures to reduce postoperative infection risk.

作者信息

Han Xing, Zhang Jia-Hui, Zhao Xin, Sang Xi-Guang

机构信息

Department of Emergency Surgery and Orthopaedic Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China.

出版信息

Sci Rep. 2025 May 26;15(1):18347. doi: 10.1038/s41598-025-04003-6.

Abstract

This retrospective study leverages machine learning to determine the optimal timing for fracture reconstruction surgery in polytrauma patients, focusing on those with concomitant traumatic brain injury. The analysis included 218 patients admitted to Qilu Hospital of Shandong University from July 2011 to April 2024. Demographic data, physiological status, and non-invasive test indicators were collected. Feature selection via the Boruta and LASSO algorithms preceded the construction of predictive models using Random Forest, Decision Tree, K-Nearest Neighbors, Support Vector Machine, LightGBM, and XGBoost. The Random Forest model excelled in the training set, with an AUC-ROC of 0.828 and accuracy of 0.745, and sustained high performance in the validation set (AUC-ROC: 0.840; Accuracy: 0.813). The final model was informed by eight critical factors, including the Glasgow Coma Scale score, calcium levels, D-dimer, hemoglobin, platelet count, LDL-cholesterol, prothrombin time-international normalized ratio, and prior surgeries. SHAP and LIME algorithms were utilized for model interpretation, elucidating the importance and predictive thresholds of the variables. The application of machine learning in this study provided precise predictions for optimal surgical conditions and timing in polytrauma patients with traumatic brain injury and fractures. This study's findings provide a foundation for personalized surgical planning, potentially reducing postoperative infections and improving patient prognoses.

摘要

这项回顾性研究利用机器学习来确定多发伤患者骨折重建手术的最佳时机,重点关注伴有创伤性脑损伤的患者。分析纳入了2011年7月至2024年4月在山东大学齐鲁医院住院的218例患者。收集了人口统计学数据、生理状态和无创检查指标。在使用随机森林、决策树、K近邻、支持向量机、LightGBM和XGBoost构建预测模型之前,通过Boruta和LASSO算法进行特征选择。随机森林模型在训练集中表现出色,AUC-ROC为0.828,准确率为0.745,在验证集中保持高性能(AUC-ROC:0.840;准确率:0.813)。最终模型由八个关键因素决定,包括格拉斯哥昏迷量表评分、钙水平、D-二聚体、血红蛋白、血小板计数、低密度脂蛋白胆固醇、凝血酶原时间-国际标准化比值和既往手术史。利用SHAP和LIME算法进行模型解释,阐明变量的重要性和预测阈值。本研究中机器学习的应用为伴有创伤性脑损伤和骨折的多发伤患者的最佳手术条件和时机提供了精确预测。本研究结果为个性化手术规划提供了基础,可能减少术后感染并改善患者预后。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验