Suppr超能文献

利用机器学习算法为轻度创伤性脑损伤患者建立神经恶化预测模型。

Development of predictive model for the neurological deterioration among mild traumatic brain injury patients using machine learning algorithms.

机构信息

Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan province, China.

出版信息

Neurosurg Rev. 2024 Aug 28;47(1):500. doi: 10.1007/s10143-024-02718-0.

Abstract

BACKGROUND

Mild traumatic brain injury (mTBI) comprises a majority of traumatic brain injury (TBI) cases. While some mTBI would suffer neurological deterioration (ND) and therefore have poorer prognosis. This study was designed to develop the predictive model for the ND among mTBI using machine learning algorithms.

METHODS

mTBI patients recorded in the Medical Information Mart for Intensive Care-III were selected for the study. The ND was defined as a drop of Glasgow Coma Scale ≥ 2 within the first 7 day after admission. Eight machine learning algorithms were trained and validated with 5-fold cross validation including extreme gradient boosting, logistic regression, light gradient boosting machine, random forest, adaptive boosting, decision tree, complement naïve Bayes, and support vector machine. The value of eight machine learning algorithms was compared by the area under the receiver operating characteristic curve (AUC).

RESULTS

361 mTBI patients suffered the ND with the incidence of 30.7%. The ND group had higher 30-day mortality (p = 0.001). In the training cohort of mTBI patients, the random forest performed the best on predicting the ND with the AUC of 1.000. The XGBoost and AdaBoost had an AUC of 0.827 and 0.815, respectively. The logistic regression performed the best on predicting the ND in the validation cohort with the AUC of 0.741. The XGBoost, random forest and AdaBoost had an AUC of 0.729, 0.735, 0.736 in the validation cohort, respectively. After adjusting confounding effects, the multivariate logistic regression found only two independent risk factors for the ND including Sequential Organ Failure Assessment (SOFA) (p < 0.001) and hypertension (p = 0.001). The logistic regression predictive model composed of SOFA and hypertension had an AUC of 0.741.

CONCLUSIONS

SOFA score and complicated hypertension are two independent risk factors for the neurological deterioration among mTBI patients. The logistic regression predictive model incorporating SOFA and hypertension is helpful to identify mTBI patients with the high risk of ND.

摘要

背景

轻度创伤性脑损伤(mTBI)占创伤性脑损伤(TBI)病例的大多数。虽然有些 mTBI 会出现神经功能恶化(ND),因此预后较差。本研究旨在使用机器学习算法为 mTBI 中的 ND 开发预测模型。

方法

从医疗信息集市-强化护理 III 中选择记录的 mTBI 患者进行研究。ND 定义为入院后第 7 天内格拉斯哥昏迷量表下降≥2 分。使用 5 折交叉验证训练和验证了 8 种机器学习算法,包括极端梯度提升、逻辑回归、轻梯度提升机、随机森林、自适应提升、决策树、补充朴素贝叶斯和支持向量机。通过接收者操作特征曲线下的面积(AUC)比较 8 种机器学习算法的价值。

结果

361 例 mTBI 患者发生 ND,发生率为 30.7%。ND 组 30 天死亡率较高(p=0.001)。在 mTBI 患者的训练队列中,随机森林在预测 ND 方面表现最佳,AUC 为 1.000。XGBoost 和 AdaBoost 的 AUC 分别为 0.827 和 0.815。逻辑回归在验证队列中对预测 ND 的表现最佳,AUC 为 0.741。XGBoost、随机森林和 AdaBoost 在验证队列中的 AUC 分别为 0.729、0.735 和 0.736。调整混杂因素后,多变量逻辑回归发现只有两个独立的 ND 危险因素,包括序贯器官衰竭评估(SOFA)(p<0.001)和高血压(p=0.001)。由 SOFA 和高血压组成的逻辑回归预测模型 AUC 为 0.741。

结论

SOFA 评分和复杂高血压是 mTBI 患者神经功能恶化的两个独立危险因素。包含 SOFA 和高血压的逻辑回归预测模型有助于识别 ND 风险较高的 mTBI 患者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验