Suppr超能文献

多尺度和多模态图像融合。处理标记细胞的拉曼/荧光图像在扫描区域和空间分辨率上的差异。

Multiscale and Multimodal Image Fusion. Coping with Differences in Scanned Area and Spatial Resolution for Raman/Fluorescence Images of Labeled Cells.

作者信息

Sicre-Conesa Albert, Marsal Maria, Gómez-Sánchez Adrián, Loza-Álvarez Pablo, de Juan Anna

机构信息

Chemometrics Group, Universitat de Barcelona, Martí i Franquès, 1, Barcelona 08028, Spain.

ICFO─Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain.

出版信息

Anal Chem. 2025 Jun 10;97(22):11554-11562. doi: 10.1021/acs.analchem.5c00492. Epub 2025 May 26.

Abstract

Multiscale and multimodal image fusion is a challenge derived from the diversity of chemical and spatial information provided by the current hyperspectral image platforms. Efficient image fusion approaches are essential to exploit the complementary chemical information across different zoom scales. Most current image fusion algorithms tend to work by equalizing the spatial characteristics of the platforms to be combined, i.e., downsampling pixel size and cropping noncommon scanned sample areas if required. In this work, a new image unmixing algorithm based on a flexible mathematical framework is proposed to enable working with all available image information while preserving the original spatial properties of every imaging measurement. The algorithm is tested on a challenging image fusion scenario of fluorescence and Raman images collected on labeled HeLa cells. The system is relevant from an analytical point of view, since smart fluorescence labeling allows profiting from the excellent morphological information without causing interferences in the rich chemical information furnished by Raman. From a data handling perspective, it offers a challenging multiscale problem, where the fast fluorescence imaging acquisition allows recording full cell images, and the slower Raman image acquisition is focused on scanning only relevant small regions of the cells analyzed. By applying the image fusion algorithm proposed, an improved morphological and chemical characterization of cell constituents in the full cell area is obtained despite the different spatial scales used in the original imaging measurements.

摘要

多尺度和多模态图像融合是一个挑战,它源于当前高光谱图像平台所提供的化学和空间信息的多样性。高效的图像融合方法对于利用不同缩放尺度间互补的化学信息至关重要。当前大多数图像融合算法倾向于通过均衡待组合平台的空间特征来工作,即如果需要,对像素大小进行下采样并裁剪非公共扫描的样本区域。在这项工作中,提出了一种基于灵活数学框架的新的图像解混算法,以便在保留每个成像测量原始空间特性的同时,利用所有可用的图像信息。该算法在一个具有挑战性的图像融合场景中进行了测试,该场景涉及对标记的HeLa细胞采集的荧光和拉曼图像。从分析的角度来看,该系统具有相关性,因为智能荧光标记能够在不干扰拉曼提供的丰富化学信息的情况下,利用出色的形态学信息。从数据处理的角度来看,它提供了一个具有挑战性的多尺度问题,其中快速的荧光成像采集允许记录完整的细胞图像,而较慢的拉曼图像采集则仅专注于扫描所分析细胞的相关小区域。通过应用所提出的图像融合算法,尽管原始成像测量中使用了不同的空间尺度,但仍能在整个细胞区域获得细胞成分改进后的形态学和化学特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3842/12163868/d3f6a7b1313e/ac5c00492_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验