Suppr超能文献

利用基于结构磁共振成像的相似性特征预测重度抑郁症患者的治疗反应。

Predicting treatment response in individuals with major depressive disorder using structural MRI-based similarity features.

作者信息

Song Sutao, Wang Songling, Gao Jingjing, Zhu Lingkai, Zhang Wenxin, Wang Yan, Wang Donglin, Zhang Danning, Wang Kangcheng

机构信息

School of Information Science and Engineering, Shandong Normal University, Jinan, 250358, China.

School of Psychology, Shandong Normal University, Jinan, 250358, China.

出版信息

BMC Psychiatry. 2025 May 26;25(1):540. doi: 10.1186/s12888-025-06945-7.

Abstract

BACKGROUND

Major Depressive Disorder (MDD) is a prevalent mental health condition with significant societal impact. Structural magnetic resonance imaging (sMRI) and machine learning have shown promise in psychiatry, offering insights into brain abnormalities in MDD. However, predicting treatment response remains challenging. This study leverages inter-brain similarity from sMRI as a novel feature to enhance prediction accuracy and explore disease mechanisms. The method's generalizability across adult and adolescent cohorts is also evaluated.

METHODS

The study included 172 participants. Based on remission status, 39 participants from the Hangzhou Dataset and 34 from the Jinan Dataset were selected for further analysis. Three methods were used to extract brain similarity features, followed by a statistical test for feature selection. Six machine learning classifiers were employed to predict treatment response, and their generalizability was tested using the Jinan Dataset. Group analyses between remission and non-remission groups were conducted to identify brain regions associated with treatment response.

RESULTS

Brain similarity features outperformed traditional metrics in predicting treatment outcomes, with the highest accuracy achieved by the model using these features. Between-group analyses revealed that the remission group had lower gray matter volume and density in the right precentral gyrus, but higher white matter volume (WMV). In the Jinan Dataset, significant differences were observed in the right cerebellum and fusiform gyrus, with higher WMV and density in the remission group.

CONCLUSIONS

This study demonstrates that brain similarity features combined with machine learning can predict treatment response in MDD with moderate success across age groups. These findings emphasize the importance of considering age-related differences in treatment planning to personalize care.

TRIAL REGISTRATION

Clinical trial number: not applicable.

摘要

背景

重度抑郁症(MDD)是一种普遍存在的心理健康状况,具有重大的社会影响。结构磁共振成像(sMRI)和机器学习在精神病学领域已显示出前景,为了解MDD中的大脑异常提供了见解。然而,预测治疗反应仍然具有挑战性。本研究利用sMRI的脑间相似性作为一种新特征来提高预测准确性并探索疾病机制。还评估了该方法在成人和青少年队列中的通用性。

方法

该研究纳入了172名参与者。根据缓解状态,从杭州数据集选取39名参与者,从济南数据集选取34名参与者进行进一步分析。使用三种方法提取脑相似性特征,随后进行特征选择的统计检验。采用六种机器学习分类器预测治疗反应,并使用济南数据集测试其通用性。对缓解组和未缓解组进行组间分析,以确定与治疗反应相关的脑区。

结果

脑相似性特征在预测治疗结果方面优于传统指标,使用这些特征的模型实现了最高的准确性。组间分析显示,缓解组右侧中央前回的灰质体积和密度较低,但白质体积(WMV)较高。在济南数据集中,右侧小脑和梭状回观察到显著差异,缓解组的WMV和密度较高。

结论

本研究表明,脑相似性特征与机器学习相结合可以在不同年龄组中较为成功地预测MDD的治疗反应。这些发现强调了在治疗计划中考虑年龄相关差异以实现个性化护理的重要性。

试验注册

临床试验编号:不适用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验