Suppr超能文献

利用脑结构协方差网络识别重度抑郁症亚组并绘制相关临床和认知变量图谱

Identifying Subgroups of Major Depressive Disorder Using Brain Structural Covariance Networks and Mapping of Associated Clinical and Cognitive Variables.

作者信息

Yang Xiao, Kumar Poornima, Nickerson Lisa D, Du Yue, Wang Min, Chen Yayun, Li Tao, Pizzagalli Diego A, Ma Xiaohong

机构信息

Psychiatric Laboratory and Mental Health Center, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China.

Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China.

出版信息

Biol Psychiatry Glob Open Sci. 2021 May 4;1(2):135-145. doi: 10.1016/j.bpsgos.2021.04.006. eCollection 2021 Aug.

Abstract

BACKGROUND

Identifying data-driven subtypes of major depressive disorder (MDD) holds promise for parsing the heterogeneity of MDD in a neurobiologically informed way. However, limited studies have used brain structural covariance networks (SCNs) for subtyping MDD.

METHODS

This study included 145 unmedicated patients with MDD and 206 demographically matched healthy control subjects, who underwent a structural magnetic resonance imaging scan and a comprehensive neurocognitive battery. Patterns of structural covariance were identified using source-based morphometry across both patients with MDD and healthy control subjects. K-means clustering algorithms were applied on dysregulated structural networks in MDD to identify potential MDD subtypes. Finally, clinical and neurocognitive measures were compared between identified subgroups to elucidate the profile of these MDD subtypes.

RESULTS

Source-based morphometry across all individuals identified 28 whole-brain SCNs that encompassed the prefrontal, anterior cingulate, and orbitofrontal cortices; basal ganglia; and cerebellar, visual, and motor regions. Compared with healthy control subjects, individuals with MDD showed lower structural network integrity in three networks including default mode, ventromedial prefrontal cortical, and salience networks. Clustering analysis revealed two MDD subtypes based on the patterns of structural network abnormalities in these three networks. Further profiling revealed that patients in subtype 1 had younger age of onset and more symptom severity as well as greater deficits in cognitive performance than patients in subtype 2.

CONCLUSIONS

Overall, we identified two MDD subtypes based on SCNs that differed in their clinical and cognitive profile. Our results represent a proof-of-concept framework for leveraging these large-scale SCNs to parse heterogeneity in MDD.

摘要

背景

识别基于数据驱动的重度抑郁症(MDD)亚型有望以神经生物学知识为依据剖析MDD的异质性。然而,使用脑结构协方差网络(SCNs)对MDD进行亚型分类的研究有限。

方法

本研究纳入了145名未服药的MDD患者和206名人口统计学匹配的健康对照者,他们接受了结构磁共振成像扫描和全面的神经认知测试。使用基于源的形态测量法确定MDD患者和健康对照者的结构协方差模式。将K均值聚类算法应用于MDD中失调的结构网络,以识别潜在的MDD亚型。最后,比较已识别亚组之间的临床和神经认知指标,以阐明这些MDD亚型的特征。

结果

对所有个体进行基于源的形态测量法,识别出28个全脑SCNs,包括前额叶、前扣带回和眶额叶皮质;基底神经节;以及小脑、视觉和运动区域。与健康对照者相比,MDD患者在包括默认模式、腹内侧前额叶皮质和突显网络在内的三个网络中结构网络完整性较低。聚类分析基于这三个网络中的结构网络异常模式揭示了两种MDD亚型。进一步分析显示,与2型亚型患者相比,1型亚型患者发病年龄更小、症状更严重,认知表现缺陷也更大。

结论

总体而言,我们基于SCNs识别出两种MDD亚型,它们在临床和认知特征上存在差异。我们的结果代表了一个概念验证框架,用于利用这些大规模SCNs剖析MDD的异质性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6977/9616319/cd5fe4ff93e7/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验