Suppr超能文献

基于MRI皮质结构预测抗抑郁治疗反应:ENIGMA-MDD工作组的一项荟萃分析

Predicting Antidepressant Treatment Response From Cortical Structure on MRI: A Mega-Analysis From the ENIGMA-MDD Working Group.

作者信息

Poirot Maarten G, Boucherie Daphne E, Caan Matthan W A, Goya-Maldonado Roberto, Belov Vladimir, Corruble Emmanuelle, Colle Romain, Couvy-Duchesne Baptiste, Kamishikiryo Toshiharu, Shinzato Hotaka, Ichikawa Naho, Okada Go, Okamoto Yasumasa, Harrison Ben J, Davey Christopher G, Jamieson Alec J, Cullen Kathryn R, Başgöze Zeynep, Klimes-Dougan Bonnie, Mueller Bryon A, Benedetti Francesco, Poletti Sara, Melloni Elisa M T, Ching Christopher R K, Zeng Ling-Li, Radua Joaquim, Han Laura K M, Jahanshad Neda, Thomopoulos Sophia I, Pozzi Elena, Veltman Dick J, Schmaal Lianne, Thompson Paul M, Ruhe Henricus G, Reneman Liesbeth, Schrantee Anouk

机构信息

Amsterdam UMC, Department of Radiology and Nuclear Medicine, University of Amsterdam, Amsterdam, the Netherlands.

Department of Biomedical Engineering and Physics, Amsterdam UMC,University of Amsterdam, Amsterdam, the Netherlands.

出版信息

Hum Brain Mapp. 2025 Jan;46(1):e70053. doi: 10.1002/hbm.70053.

Abstract

Accurately predicting individual antidepressant treatment response could expedite the lengthy trial-and-error process of finding an effective treatment for major depressive disorder (MDD). We tested and compared machine learning-based methods that predict individual-level pharmacotherapeutic treatment response using cortical morphometry from multisite longitudinal cohorts. We conducted an international analysis of pooled data from six sites of the ENIGMA-MDD consortium (n = 262 MDD patients; age = 36.5 ± 15.3 years; 154 (59%) female; mean response rate = 57%). Treatment response was defined as a ≥ 50% reduction in symptom severity score after 4-12 weeks post-initiation of antidepressant treatment. Structural MRI was acquired before, or < 14 days after, treatment initiation. The cortex was parcellated using FreeSurfer, from which cortical thickness and surface area were measured. We tested several machine learning pipeline configurations, which varied in (i) the way we presented the cortical data (i.e., average values per region of interest, as a vector containing voxel-wise cortical thickness and surface area measures, and as cortical thickness and surface area projections), (ii) whether we included clinical data, and the (iii) machine learning model (i.e., gradient boosting, support vector machine, and neural network classifiers) and (iv) cross-validation methods (i.e., k-fold and leave-one-site-out) we used. First, we tested if the overall predictive performance of the pipelines was better than chance, with a corrected 10-fold cross-validation permutation test. Second, we compared if some machine learning pipeline configurations outperformed others. In an exploratory analysis, we repeated our first analysis in three subpopulations, namely patients (i) from a single site, (ii) with comparable response rates, and (iii) showing the least (first quartile) and the most (fourth quartile) treatment response, which we call the extreme (non-)responders subpopulation. Finally, we explored the effect of including subcortical volumetric data on model performance. Overall, performance predicting antidepressant treatment response was not significantly better than chance (balanced accuracy = 50.5%; p = 0.66) and did not vary with alternative pipeline configurations. Exploratory analyses revealed that performance across models was only significantly better than chance in the extreme (non-)responders subpopulation (balanced accuracy = 63.9%, p = 0.001). Including subcortical data did not alter the observed model performance. Cortical structural MRI alone could not reliably predict individual pharmacotherapeutic treatment response in MDD. None of the used machine learning pipeline configurations outperformed the others. In exploratory analyses, we found that predicting response in the extreme (non-)responders subpopulation was feasible on both cortical data alone and combined with subcortical data, which suggests that specific MDD subpopulations may exhibit response-related patterns in structural data. Future work may use multimodal data to predict treatment response in MDD.

摘要

准确预测个体对抗抑郁药物的治疗反应,可以加快为重度抑郁症(MDD)寻找有效治疗方法的漫长试错过程。我们测试并比较了基于机器学习的方法,这些方法使用来自多站点纵向队列的皮质形态测量数据来预测个体水平的药物治疗反应。我们对来自ENIGMA-MDD联盟六个站点的汇总数据进行了国际分析(n = 262例MDD患者;年龄 = 36.5 ± 15.3岁;154例(59%)为女性;平均缓解率 = 57%)。治疗反应定义为抗抑郁药物治疗开始后4 - 12周症状严重程度评分降低≥50%。在治疗开始前或开始后<14天采集结构MRI。使用FreeSurfer对皮质进行分割,并测量皮质厚度和表面积。我们测试了几种机器学习流程配置,这些配置在以下方面有所不同:(i)我们呈现皮质数据的方式(即每个感兴趣区域的平均值、作为包含体素级皮质厚度和表面积测量值的向量,以及作为皮质厚度和表面积投影),(ii)是否纳入临床数据,(iii)机器学习模型(即梯度提升、支持向量机和神经网络分类器),以及(iv)我们使用的交叉验证方法(即k折和留一站点法)。首先,我们通过校正的10折交叉验证排列检验,测试这些流程的总体预测性能是否优于随机水平。其次,我们比较了某些机器学习流程配置是否优于其他配置。在探索性分析中,我们在三个亚组中重复了首次分析,即(i)来自单个站点的患者,(ii)具有可比缓解率的患者,以及(iii)显示最低(第一四分位数)和最高(第四四分位数)治疗反应的患者,我们将其称为极端(无)反应者亚组。最后,我们探讨了纳入皮质下体积数据对模型性能的影响。总体而言,预测抗抑郁药物治疗反应的性能并不显著优于随机水平(平衡准确率 = 50.5%;p = 0.66),并且不会因替代流程配置而有所不同。探索性分析表明,在极端(无)反应者亚组中,各模型的性能仅显著优于随机水平(平衡准确率 = 63.9%,p = 0.001)。纳入皮质下数据并未改变观察到的模型性能。仅皮质结构MRI无法可靠地预测MDD患者的个体药物治疗反应。所使用的机器学习流程配置中没有一个优于其他配置。在探索性分析中,我们发现仅根据皮质数据以及结合皮质下数据来预测极端(无)反应者亚组的反应是可行的,这表明特定的MDD亚组可能在结构数据中表现出与反应相关的模式。未来的工作可能会使用多模态数据来预测MDD的治疗反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c824/11702469/e7e11d9666bf/HBM-46-e70053-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验