文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

ORAKLE:使用深度学习对脓毒症相关急性肾损伤患者的MAKE30进行最佳风险预测。

ORAKLE: Optimal Risk prediction for mAke30 in patients with sepsis associated AKI using deep LEarning.

作者信息

Oh Wonsuk, Veshtaj Marinela, Sawant Ashwin, Agrawal Pulkit, Gomez Hernando, Suarez-Farinas Mayte, Oropello John, Kohli-Seth Roopa, Kashani Kianoush, Kellum John A, Nadkarni Girish, Sakhuja Ankit

机构信息

Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Division of Data-Driven and Digital Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

出版信息

Crit Care. 2025 May 26;29(1):212. doi: 10.1186/s13054-025-05457-w.


DOI:10.1186/s13054-025-05457-w
PMID:40420108
Abstract

BACKGROUND: Major Adverse Kidney Events within 30 days (MAKE30) is an important patient-centered outcome for assessing the impact of acute kidney injury (AKI). Existing prediction models for MAKE30 are static and overlook dynamic changes in clinical status. We introduce ORAKLE, a novel deep-learning model that utilizes evolving time-series data to predict MAKE30, enabling personalized, patient-centered approaches to AKI management and outcome improvement. METHODS: We conducted a retrospective study using three publicly available critical care databases: MIMIC-IV as the development cohort, and SiCdb and eICU-CRD as external validation cohorts. Patients with sepsis-3 criteria who developed AKI within 48 h of intensive care unit admission were identified. Our primary outcome was MAKE30, defined as a composite of death, new dialysis or persistent kidney dysfunction within 30 days of ICU admission. We developed ORAKLE using Dynamic DeepHit framework for time-series survival analysis and its performance against Cox and XGBoost models. We further assessed model calibration using Brier score. RESULTS: We analyzed 16,671 patients from MIMIC-IV, 2665 from SICdb, and 11,447 from eICU-CRD. ORAKLE outperformed the XGBoost and Cox models in predicting MAKE30, achieving AUROCs of 0.84 (95% CI: 0.83-0.86) vs. 0.81 (95% CI: 0.79-0.83) vs. 0.80 (95% CI: 0.78-0.82) in MIMIC-IV internal test set, 0.83 (95% CI: 0.81-0.85) vs. 0.80 (95% CI: 0.78-0.83) vs. 0.79 (95% CI: 0.77-0.81) in SICdb, and 0.85 (95% CI: 0.84-0.85) vs. 0.83 (95% CI: 0.83-0.84) vs. 0.81 (95% CI: 0.80-0.82) in eICU-CRD. The AUPRC values for ORAKLE were also significantly better than that of XGBoost and Cox models. The Brier score for ORAKLE was 0.21 across the internal test set, SICdb, and eICU-CRD, suggesting good calibration. CONCLUSIONS: ORAKLE is a robust deep-learning model for predicting MAKE30 in critically ill patients with AKI that utilizes evolving time series data. By incorporating dynamically changing time series features, the model captures the evolving nature of kidney injury, treatment effects, and patient trajectories more accurately. This innovation facilitates tailored risk assessments and identifies varying treatment responses, laying the groundwork for more personalized and effective management approaches.

摘要

背景:30天内重大不良肾脏事件(MAKE30)是评估急性肾损伤(AKI)影响的一项重要的以患者为中心的结局指标。现有的MAKE30预测模型是静态的,忽略了临床状态的动态变化。我们引入了ORAKLE,这是一种新型深度学习模型,它利用不断变化的时间序列数据来预测MAKE30,从而实现以患者为中心的个性化AKI管理方法并改善结局。 方法:我们使用三个公开可用的重症监护数据库进行了一项回顾性研究:将MIMIC-IV作为开发队列,将SiCdb和eICU-CRD作为外部验证队列。确定在重症监护病房入院48小时内发生AKI且符合脓毒症-3标准的患者。我们的主要结局是MAKE30,定义为重症监护病房入院30天内死亡、开始新的透析或持续存在肾功能不全的综合情况。我们使用动态DeepHit框架进行时间序列生存分析来开发ORAKLE,并将其与Cox模型和XGBoost模型的性能进行比较。我们还使用Brier评分进一步评估模型校准情况。 结果:我们分析了来自MIMIC-IV的16671例患者、来自SICdb的2665例患者和来自eICU-CRD的11447例患者。在预测MAKE30方面,ORAKLE优于XGBoost模型和Cox模型,在MIMIC-IV内部测试集中的曲线下面积(AUROC)分别为0.84(95%CI:0.83 - 0.86)、0.81(95%CI:0.79 - 0.83)、0.80(95%CI:0.78 - 0.82);在SICdb中的AUROC分别为0.83(95%CI:0.81 - 0.85)、0.80(95%CI:0.78 - 0.83)、0.79(95%CI:0.77 - 0.81);在eICU-CRD中的AUROC分别为0.85(95%CI:0.84 - 0.85)、0.83(95%CI:0.83 - 0.84)、0.81(95%CI:0.80 - 0.82)。ORAKLE的曲线下精确率(AUPRC)值也显著优于XGBoost模型和Cox模型。在内部测试集、SICdb和eICU-CRD中,ORAKLE的Brier评分为0.21,表明校准良好。 结论:ORAKLE是一种强大的深度学习模型,用于预测患有AKI的重症患者的MAKE30,它利用不断变化的时间序列数据。通过纳入动态变化的时间序列特征,该模型更准确地捕捉了肾损伤的演变性质、治疗效果和患者轨迹。这一创新有助于进行针对性的风险评估,并识别不同的治疗反应,为更个性化和有效的管理方法奠定基础。

相似文献

[1]
ORAKLE: Optimal Risk prediction for mAke30 in patients with sepsis associated AKI using deep LEarning.

Crit Care. 2025-5-26

[2]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[3]
Supervised Machine Learning Models for Predicting Sepsis-Associated Liver Injury in Patients With Sepsis: Development and Validation Study Based on a Multicenter Cohort Study.

J Med Internet Res. 2025-5-26

[4]
Development of a Machine Learning-Based Predictive Model for Postoperative Delirium in Older Adult Intensive Care Unit Patients: Retrospective Study.

J Med Internet Res. 2025-6-19

[5]
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?

Clin Orthop Relat Res. 2024-9-1

[6]
Does the Presence of Missing Data Affect the Performance of the SORG Machine-learning Algorithm for Patients With Spinal Metastasis? Development of an Internet Application Algorithm.

Clin Orthop Relat Res. 2024-1-1

[7]
Prognostic Value of Leukocyte-Based Risk Model for Acute Kidney Injury Prediction in Critically Ill Acute Exacerbation of Chronic Obstructive Pulmonary Disease Patients.

Int J Chron Obstruct Pulmon Dis. 2024-3-4

[8]
Development and Validation of a Convolutional Neural Network Model to Predict a Pathologic Fracture in the Proximal Femur Using Abdomen and Pelvis CT Images of Patients With Advanced Cancer.

Clin Orthop Relat Res. 2023-11-1

[9]
Postoperative acute kidney injury and risk factors for major adverse kidney events within 30 days of burn surgery.

Burns. 2025-8

[10]
A New Measure of Quantified Social Health Is Associated With Levels of Discomfort, Capability, and Mental and General Health Among Patients Seeking Musculoskeletal Specialty Care.

Clin Orthop Relat Res. 2025-4-1

本文引用的文献

[1]
Advancing Delirium Treatment Trials in Older Adults: Recommendations for Future Trials From the Network for Investigation of Delirium: Unifying Scientists (NIDUS).

Crit Care Med. 2025-1-1

[2]
Effect of Tiered Implementation of Clinical Decision Support System for Acute Kidney Injury and Nephrotoxin Exposure in Cardiac Surgery Patients.

Appl Clin Inform. 2025-1

[3]
Machine learning derived serum creatinine trajectories in acute kidney injury in critically ill patients with sepsis.

Crit Care. 2024-5-10

[4]
TRIPOD+AI statement: updated guidance for reporting clinical prediction models that use regression or machine learning methods.

BMJ. 2024-4-16

[5]
Harnessing Big Data in Critical Care: Exploring a new European Dataset.

Sci Data. 2024-3-28

[6]
An early warning model for predicting major adverse kidney events within 30 days in sepsis patients.

Front Med (Lausanne). 2024-2-26

[7]
Predicting sepsis using deep learning across international sites: a retrospective development and validation study.

EClinicalMedicine. 2023-8-11

[8]
MIMIC-IV, a freely accessible electronic health record dataset.

Sci Data. 2023-1-3

[9]
Machine learning models for predicting acute kidney injury: a systematic review and critical appraisal.

Clin Kidney J. 2022-8-2

[10]
Prediction of Mortality and Major Adverse Kidney Events in Critically Ill Patients With Acute Kidney Injury.

Am J Kidney Dis. 2023-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索