Mohammadi Mohsen, Shang Jin, Li Yuyang, Rahmanudin Aiman, Jakonis Darius, Berggren Magnus, Herlogsson Lars, Tybrandt Klas
Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 602 21, Sweden.
Wallenberg Wood Science Center, ITN, Linköping University, Norrköping, 602 21, Sweden.
Small. 2025 Jul;21(29):e2501175. doi: 10.1002/smll.202501175. Epub 2025 May 27.
Stretchable electronics enable seamless integration of wearables with the human body, thereby creating new opportunities in biomedical applications. Miniaturized multilayer stretchable printed circuit boards are key for achieving high functional density circuits with minimal footprint. However, current microfabrication technologies struggle with simultaneously achieving tissue-like softness (<<1 MPa), high resolution and low sheet resistance. This study demonstrates a scalable printing method that enables ultra-soft (<0.4 MPa) stretchable conductors (>300% strain) with high-resolution (<2.5 µm width) and high aspect-ratio tracks (>1) connected by ultra-fine (20 µm) vertical-interconnect-access (VIA) for multi-layered configurations. The method is based on stencil printing into laser-defined bio-masks comprising the abundant biopolymer lignin, thereby achieving printing capabilities beyond conventional methods in a sustainable manner. Based on the unique capabilities, a miniaturized multilayer ultra-soft wireless near-field-communication temperature logger is developed. Laser-defined printing can pave the way for the next generation of ultra-soft miniaturized wearables.
可拉伸电子器件能够实现可穿戴设备与人体的无缝集成,从而在生物医学应用中创造新机遇。小型化多层可拉伸印刷电路板是实现具有最小占位面积的高功能密度电路的关键。然而,当前的微制造技术难以同时实现类似组织的柔软度(<<1兆帕)、高分辨率和低薄层电阻。本研究展示了一种可扩展的印刷方法,该方法能够制造出超柔软(<0.4兆帕)、可拉伸(应变>300%)的导体,其具有高分辨率(宽度<2.5微米)和高纵横比的线路(>1),并通过用于多层配置的超细(20微米)垂直互连通道(VIA)连接。该方法基于将模板印刷到由丰富的生物聚合物木质素构成的激光定义生物掩膜中,从而以可持续的方式实现超越传统方法的印刷能力。基于这些独特能力,开发了一种小型化多层超柔软无线近场通信温度记录器。激光定义印刷可为下一代超柔软小型可穿戴设备铺平道路。