Luo Feng, Ciesielski Artur, Samorì Paolo
Université de Strasbourg, CNRS, ISIS UMR7006, 8 Allée Gaspard Monge, Strasbourg, F-67000, France.
Adv Mater. 2025 Aug;37(32):e2503867. doi: 10.1002/adma.202503867. Epub 2025 May 27.
Thermal fluctuations pose a significant challenge to the signal stability of nanomaterial-based piezoresistive pressure sensors, limiting their effectiveness in applications such as electronic skin and robotics. Conventional temperature compensation strategies often rely on additional thermal sensors or complex calibration algorithms. Here, a flexible pressure sensor is reported featuring a nonlinear conductive graphene composite layer within a bilayer architecture, enabling bias voltage-controlled sensitivity without structural redesign. The sensor achieves ultra-high sensitivity (742.3 kPa), a broad linear sensing range of up to 800 kPa (R = 0.99913), and excellent long-term durability over 10 000 cycles. Crucially, the unique nonlinear characteristics enable the bias voltage to function as an internal remote control for correcting temperature drifts between 25 and 60 °C, as demonstrated by precise manipulation in robotic grippers under varying temperature conditions. This work offers a universal strategy for building environmentally adaptive sensors, advancing the development of robust and high-precision wearable electronics.
热波动对基于纳米材料的压阻式压力传感器的信号稳定性构成了重大挑战,限制了它们在电子皮肤和机器人技术等应用中的有效性。传统的温度补偿策略通常依赖于额外的热传感器或复杂的校准算法。在此,报道了一种柔性压力传感器,其在双层结构中具有非线性导电石墨烯复合层,无需结构重新设计即可实现偏置电压控制的灵敏度。该传感器实现了超高灵敏度(742.3 kPa)、高达800 kPa的宽线性传感范围(R = 0.99913)以及超过10000次循环的优异长期耐久性。至关重要的是,独特的非线性特性使偏置电压能够作为内部远程控制,用于校正25至60°C之间的温度漂移,这在不同温度条件下的机器人夹具中的精确操作中得到了证明。这项工作为构建环境自适应传感器提供了一种通用策略,推动了坚固且高精度可穿戴电子产品的发展。