Fabricius Dorit, Ludwig Carolin, Proffen Matthias, Hägele Janina, Scholz Judith, Vieweg Christiane, Rode Immanuel, Hoffmann Simone, Körper Sixten, Schrezenmeier Hubert, Jahrsdörfer Bernd
Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany.
Department of Transfusion Medicine, Ulm University, Ulm, Germany.
Front Immunol. 2025 May 12;16:1580448. doi: 10.3389/fimmu.2025.1580448. eCollection 2025.
The emergence of SARS-CoV-2 variants of concern (VOCs), particularly Omicron, has challenged the efficacy of initial COVID-19 vaccination strategies. Booster immunizations, especially with mRNA vaccines, were introduced to enhance and prolong immune protection. However, the underlying mechanisms of humoral and cellular immunity induced by homologous versus heterologous vaccination regimens remain incompletely understood. This study aimed to elucidate the immune responses, including B cell, plasmacytoid dendritic cell (pDC), and T cell activation, following mRNA booster vaccination.
In a longitudinal cohort study, 136 individuals received three different vaccination regimens: homologous mRNA, heterologous vector-mRNA-mRNA, or heterologous vector-vector-mRNA vaccinations. Serum and peripheral blood mononuclear cells (PBMCs) were collected at multiple time points up to 64 weeks after initial vaccination. Anti-SARS-CoV-2 IgG titers and neutralization capacity against the wildtype virus and Omicron variant were measured using ELISA and cPass assays. Cellular immunity was assessed by IFN-γ release assays, and flow cytometry was employed to analyze B cell and pDC frequencies, viability, and activation markers. Functional pDC-mediated T cell activation was evaluated in mixed lymphocyte cultures.
mRNA booster vaccination stabilized high anti-SARS-CoV-2 IgG titers and neutralizing activity against wildtype virus across all regimens, with the homologous mRNA group showing the highest antibody titers and Omicron neutralization capacity. Peripheral B cell frequencies and activation markers (MHC class I/II, CD86) were significantly upregulated post-booster. pDCs demonstrated enhanced antigen-presenting capacity and significantly promoted SARS-CoV-2-specific T cell IFN-γ responses . Despite differences in humoral responses between regimens, breakthrough infection rates up to 25 weeks post-booster were comparable across cohorts, suggesting compensatory mechanisms via cellular immunity.
Our findings highlight the pivotal role of pDCs and T cells in sustaining effective immunity following mRNA booster vaccination. While homologous mRNA regimens induce superior humoral responses, robust cellular immunity in heterologous regimens may balance protection levels against breakthrough infections. The study underscores the importance of integrated humoral and cellular immune responses, suggesting potential for optimized booster strategies and pDC-targeted vaccine designs to enhance long-term protection against SARS-CoV-2 and emerging variants.
严重急性呼吸综合征冠状病毒2(SARS-CoV-2)变异株,尤其是奥密克戎变异株的出现,对最初的2019冠状病毒病(COVID-19)疫苗接种策略的有效性提出了挑战。引入加强免疫,特别是使用信使核糖核酸(mRNA)疫苗,以增强和延长免疫保护。然而,同源与异源疫苗接种方案所诱导的体液免疫和细胞免疫的潜在机制仍未完全了解。本研究旨在阐明mRNA加强免疫接种后的免疫反应,包括B细胞、浆细胞样树突状细胞(pDC)和T细胞的激活情况。
在一项纵向队列研究中,136名个体接受了三种不同的疫苗接种方案:同源mRNA、异源载体-mRNA-mRNA或异源载体-载体-mRNA接种。在初次接种后长达64周的多个时间点采集血清和外周血单核细胞(PBMC)。使用酶联免疫吸附测定(ELISA)和cPass测定法测量抗SARS-CoV-2 IgG滴度以及针对野生型病毒和奥密克戎变异株的中和能力。通过干扰素-γ释放测定评估细胞免疫,并采用流式细胞术分析B细胞和pDC的频率、活力及激活标志物。在混合淋巴细胞培养物中评估功能性pDC介导的T细胞激活。
mRNA加强免疫接种使所有方案中针对野生型病毒的抗SARS-CoV-2 IgG滴度和中和活性保持在较高水平,同源mRNA组的抗体滴度和奥密克戎中和能力最高。加强免疫后外周B细胞频率和激活标志物(MHC I/II类、CD86)显著上调。pDC表现出增强的抗原呈递能力,并显著促进SARS-CoV-2特异性T细胞干扰素-γ反应。尽管各方案之间体液反应存在差异,但加强免疫后长达25周的突破性感染率在各队列中相当,表明通过细胞免疫存在补偿机制。
我们的研究结果突出了pDC和T细胞在mRNA加强免疫接种后维持有效免疫中的关键作用。虽然同源mRNA方案诱导出更强的体液反应,但异源方案中强大的细胞免疫可能平衡针对突破性感染的保护水平。该研究强调了体液免疫和细胞免疫反应整合的重要性,表明优化加强免疫策略和以pDC为靶点的疫苗设计在增强针对SARS-CoV-2及新出现变异株的长期保护方面具有潜力。