Yang Lin, Chen Qinghua, Mu Junjie, Liu Tangying, Li Xiaoxiao, Cai Shuxiang
Navy Aviation University, Yantai 264001, China.
School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China.
Biomimetics (Basel). 2025 May 2;10(5):285. doi: 10.3390/biomimetics10050285.
Ship replenishment path planning is a critical problem in the field of maritime logistics. This study proposes a novel synergistic hybrid optimization algorithm (SHOA) that effectively integrates ant colony optimization (ACO), the Clarke-Wright algorithm (CW), and the genetic algorithm (GA) to solve the capacitated multi-ship replenishment path planning problem (CMSRPPP). The proposed methodology employs a three-stage optimization framework: (1) initial path generation via parallel execution of the CW and ACO; (2) population initialization for the GA by strategically combining optimal solutions from ACO and the CW with randomized solutions; (3) iterative refinement using an enhanced GA featuring an embedded evolutionary reversal operation for local intensification. To evaluate performance, the SHOA is benchmarked against ACO, the GA, the particle swarm optimization algorithm, and the simulated annealing algorithm for the capacitated vehicle routing problem. Finally, the SHOA is applied to diverse CMSRPPP instances, demonstrating high adaptability, robust planning capabilities, and promising practical potential.
船舶补给路径规划是海上物流领域的一个关键问题。本研究提出了一种新颖的协同混合优化算法(SHOA),该算法有效地整合了蚁群优化算法(ACO)、克拉克 - 赖特算法(CW)和遗传算法(GA),以解决有容量限制的多船补给路径规划问题(CMSRPPP)。所提出的方法采用了一个三阶段优化框架:(1)通过并行执行CW和ACO生成初始路径;(2)通过将ACO和CW的最优解与随机解进行策略性组合来初始化GA的种群;(3)使用具有嵌入式进化反转操作以进行局部强化的增强型GA进行迭代优化。为了评估性能,将SHOA与ACO、GA、粒子群优化算法以及用于有容量限制车辆路径问题的模拟退火算法进行了基准测试。最后,将SHOA应用于各种CMSRPPP实例,展示了其高适应性、强大的规划能力和良好的实际应用潜力。