Wu Mingyu, Su Eileen Lee Ming, Yeong Che Fai, Dong Bowen, Holderbaum William, Yang Chenguang
Jiaxing Key Laboratory of Industrial Internet Security, Jiaxing Vocational and Technical College, Jiaxing, Zhejiang, China.
Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia.
PeerJ Comput Sci. 2024 Dec 18;10:e2629. doi: 10.7717/peerj-cs.2629. eCollection 2024.
This research presents a novel hybrid path planning algorithm combining A*, ant colony optimization (ACO), and the dynamic window approach (DWA) to enhance energy efficiency in warehouse environments. The proposed algorithm leverages the heuristic capabilities of A*, the optimization strengths of ACO, and the dynamic adaptability of DWA. Experimental results demonstrate that the IACO+A*+DWA approach consistently outperforms other hybrid methods across various metrics. In complex warehouse scenarios, the IACO+A*+DWA algorithm achieved an average energy consumption of 89.8 J, which is 13.3% lower than ACO+A*+DWA, 6.6% lower than GA+A*+DWA, and 25.8% lower than PSO+A*+DWA. The algorithm produced a path length of 95.94 m with 43 turns, compared to 97.36 m with 46 turns for ACO+A*+DWA, 104.43 m with 50 turns for GA+A*+DWA, and 97.84 m with 56 turns for PSO+A*+DWA. Time to goal was 197.93 s, 1.5% faster than GA+A*+DWA. Statistical analysis using ANOVA confirmed the significant differences between the algorithms in terms of energy consumption, path length, number of turns, and time taken, demonstrating the superior performance of IACO+A*+DWA. These results indicate that the IACO+A*+DWA algorithm minimizes energy consumption and produces shorter and more efficient paths, making it highly suitable for real-time applications in dynamic and complex warehouse environments. Future work will focus on further optimizing the algorithm and integrating machine learning techniques for enhanced adaptability and performance.
本研究提出了一种新颖的混合路径规划算法,该算法结合了A算法、蚁群优化(ACO)算法和动态窗口方法(DWA),以提高仓库环境中的能源效率。所提出的算法利用了A算法的启发式能力、ACO算法的优化优势以及DWA算法的动态适应性。实验结果表明,IACO+A*+DWA方法在各项指标上始终优于其他混合方法。在复杂的仓库场景中,IACO+A*+DWA算法的平均能耗为89.8焦耳,比ACO+A*+DWA低13.3%,比GA+A*+DWA低6.6%,比PSO+A*+DWA低25.8%。该算法生成的路径长度为95.94米,转弯43次,相比之下,ACO+A*+DWA的路径长度为97.36米,转弯46次;GA+A*+DWA的路径长度为104.43米,转弯50次;PSO+A*+DWA的路径长度为97.84米,转弯56次。到达目标的时间为197.93秒,比GA+A*+DWA快1.5%。使用方差分析(ANOVA)的统计分析证实了各算法在能耗、路径长度、转弯次数和所用时间方面存在显著差异,证明了IACO+A*+DWA的优越性能。这些结果表明,IACO+A*+DWA算法可将能耗降至最低,并生成更短、更高效的路径,使其非常适合在动态复杂的仓库环境中进行实时应用。未来的工作将集中在进一步优化该算法,并集成机器学习技术以提高适应性和性能。