Adamopoulos Ioannis, Valamontes Antonios, Tsirkas Panagiotis, Dounias George
Hellenic Republic Region of Attica, Department of Environmental Hygiene and Public Health Inspections, Central Sector of Athens, 11521 Athens, Greece.
Department of Public Health Policy, Sector of Occupational & Environmental Health, School of Public Health, University of West Attica, 11521 Athens, Greece.
Eur J Investig Health Psychol Educ. 2025 Apr 22;15(5):65. doi: 10.3390/ejihpe15050065.
The increasing severity of climate-related workplace hazards challenges occupational health and safety, particularly for Public Health and Safety Inspectors. Exposure to extreme temperatures, air pollution, and high-risk environments heightens immediate physical threats and long-term burnout. This study employs Artificial Intelligence (AI)-driven predictive analytics and secondary data analysis to assess hazards and forecast burnout risks. Machine learning models, including eXtreme Gradient Boosting (XGBoost 3.0), Random Forest, Autoencoders, and Long Short-Term Memory (LSTMs), achieved 85-90% accuracy in hazard prediction, reducing workplace incidents by 35% over six months. Burnout risk analysis identified key predictors: physical hazard exposure (β = 0.76, < 0.01), extended work hours (>10 h/day, +40% risk), and inadequate training (β = 0.68, < 0.05). Adaptive workload scheduling and fatigue monitoring reduced burnout prevalence by 28%. Real-time environmental data improved hazard detection, while Natural Language Processing (NLP)-based text mining identified stress-related indicators in worker reports. The results demonstrate AI's effectiveness in workplace safety, predicting, classifying, and mitigating risks. Reinforcement learning-based adaptive monitoring optimizes workforce well-being. Expanding predictive-driven occupational health frameworks to broader industries could enhance safety protocols, ensuring proactive risk mitigation. Future applications include integrating biometric wearables and real-time physiological monitoring to improve predictive accuracy and strengthen occupational resilience.
与气候相关的工作场所危害日益严重,给职业健康与安全带来了挑战,对公共卫生和安全检查员来说尤其如此。暴露于极端温度、空气污染和高风险环境中会增加直接的身体威胁和长期的职业倦怠。本研究采用人工智能(AI)驱动的预测分析和二次数据分析来评估危害并预测职业倦怠风险。机器学习模型,包括极端梯度提升(XGBoost 3.0)、随机森林、自动编码器和长短期记忆网络(LSTM),在危害预测方面的准确率达到了85%-90%,在六个月内将工作场所事故减少了35%。职业倦怠风险分析确定了关键预测因素:身体危害暴露(β = 0.76,<0.01)、工作时间延长(>10小时/天,风险增加40%)和培训不足(β = 0.68,<0.05)。适应性工作量调度和疲劳监测使职业倦怠患病率降低了28%。实时环境数据改善了危害检测,而基于自然语言处理(NLP)的文本挖掘则在工人报告中识别出与压力相关的指标。结果表明,人工智能在工作场所安全、预测、分类和减轻风险方面具有有效性。基于强化学习的自适应监测可优化员工的健康状况。将基于预测的职业健康框架扩展到更广泛的行业可以加强安全协议,确保积极主动地减轻风险。未来的应用包括整合生物识别可穿戴设备和实时生理监测,以提高预测准确性并增强职业适应能力。