Suazo-Hernández Jonathan, Mlih Rawan, Bustamante Marion, Castro-Castillo Carmen, Mora María de la Luz, Sepúlveda-Parada María de Los Ángeles, Mella Catalina, Cornejo Pablo, Ruiz Antonieta
Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Biotechnological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Avenida Francisco Salazar, Temuco 01145, Chile.
Department of Chemical Sciences and Natural Resources, Universidad de La Frontera, Avenida Francisco Salazar, P.O. Box 54-D, Temuco 01145, Chile.
Toxics. 2025 Apr 30;13(5):363. doi: 10.3390/toxics13050363.
The overuse of inorganic phosphate fertilizers in soils has led to the transfer of inorganic phosphorus (Pi) to aquatic ecosystems, resulting in eutrophication. Adsorption-desorption studies in batch systems were used to evaluate the effect of adding 1% zinc oxide (ZnO) engineered nanoparticles (ENPs) on Pi retention in Ultisol, and Mollisol soils. The 1% ZnO-ENPs showed increased chemical properties such as pH, electrical conductivity, and organic matter content, and reduce nutrient bioavailability (P, N, and Zn), and physical properties such as surface area and pore size of the two soils. The kinetic data of Pi adsorption on Ultisol, Mollisol, Ultisol + 1% ZnO-ENP, and Mollisol + 1% ZnO-ENP systems fitted well to the pseudo-second-order model (r ≥ 0.942, and χ ≤ 61), and the Elovich model (r ≥ 0.951, and χ ≤ 32). Pi adsorption isotherms for the Ultisol soil adequately fitted to the Freundlich model (r = 0.976, and χ = 16), and for the Mollisol soil, the Langmuir model (r = 0.991, and χ = 3) had a better fit to the data. With 1% ZnO-ENPs, the linear, Langmuir, and Freundlich models correctly described the Pi adsorption data. Pi desorption was reduced in the Ultisol compared to the Mollisol soil, and with 1% ZnO-ENPs further decreased Pi desorption in both soils. Therefore, ENPs can be used as a new alternative material for Pi fixation in agricultural soils and contribute to mitigating eutrophication issues of aqueous systems.
土壤中无机磷肥的过度使用导致无机磷(Pi)转移至水生生态系统,从而造成富营养化。采用间歇系统中的吸附 - 解吸研究来评估添加1%氧化锌(ZnO)工程纳米颗粒(ENPs)对老成土和软土中磷保留的影响。1%的ZnO - ENPs使两种土壤的化学性质如pH值、电导率和有机质含量增加,降低了养分生物有效性(P、N和Zn),以及物理性质如表面积和孔径。Pi在老成土、软土、老成土 + 1% ZnO - ENP和软土 + 1% ZnO - ENP系统上的吸附动力学数据很好地拟合了准二级模型(r ≥ 0.942,χ ≤ 61)和Elovich模型(r ≥ 0.951,χ ≤ 32)。老成土的Pi吸附等温线充分拟合了Freundlich模型(r = 0.976,χ = 16),而软土的Langmuir模型(r = 0.991,χ = 3)对数据的拟合更好。对于1% ZnO - ENPs,线性、Langmuir和Freundlich模型正确地描述了Pi吸附数据。与软土相比,老成土中的Pi解吸减少,并且添加1% ZnO - ENPs后两种土壤中的Pi解吸进一步降低。因此,ENPs可用作农业土壤中固定磷的新型替代材料,并有助于缓解水系统的富营养化问题。