Suppr超能文献

纳米零价铜粒径对火山灰土壤无机磷吸附解吸的影响。

Effect of particle size of nanoscale zero-valent copper on inorganic phosphorus adsorption-desorption in a volcanic ash soil.

机构信息

Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Biotechnological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, Chile; Department of Chemical Sciences and Natural Resources, Universidad de La Frontera, Avenida Francisco Salazar 01145, P.O. Box 54-D, Temuco, Chile.

Universidad de Chile, Departamento de Ingeniería y Suelos, 8820808, Santiago, Chile; Sede Vallenar, Universidad de Atacama, Costanera #105, Vallenar, 1612178, Chile.

出版信息

Chemosphere. 2023 Nov;340:139836. doi: 10.1016/j.chemosphere.2023.139836. Epub 2023 Aug 16.

Abstract

Zero-valent copper engineered nanoparticles (Cu-ENPs) released through unintentional or intentional actions into the agricultural soils can alter the availability of inorganic phosphorus (IP) to plants. In this study, we used adsorption-desorption experiments to evaluate the effect of particle size of 1% Cu-ENPs (25 nm and 40-60 nm) on IP availability in Santa Barbara (SB) volcanic ash soil. X-Ray Diffraction results showed that Cu-ENPs were formed by a mixture of Cu metallic and Cu oxides (CuO or/and CuO) species, while specific surface area values showed that Cu-ENPs/25 nm could form larger aggregate particles compared to Cu-ENPs/40-60 nm. The kinetic IP adsorption of SB soil without and with 1% Cu-ENPs (25 nm and 40-60 nm) followed the mechanism described by the pseudo-second-order (k = 0.45-1.13 x 10 kg mmol min; r ≥ 0.999, and RSS ≤ 0.091) and Elovich (α = 14621.10-3136.20 mmol kg min; r ≥ 0.984, and RSS ≤ 69) models. Thus, the rate-limiting step for IP adsorption in the studied systems was chemisorption on a heterogeneous surface. Adsorption equilibrium isotherms without Cu-ENPs were fitted well to the Freundlich model, while with 1% Cu-ENPs (25 nm and 40-60 nm), isotherms were described best by the Freundlich and/or Langmuir model. The IP relative adsorption capacity (K) was higher with 1% Cu-ENPs/40-60 nm (K = 110.41) than for 1% Cu-ENPs/25 nm (K = 74.40) and for SB soil (K = 48.17). This study showed that plausible IP retention mechanisms in the presence of 1% Cu-ENPs in SB soil were: i) ligand exchange, ii) electrostatic attraction, and iii) co-precipitate formation. The desorption study demonstrated that 1% Cu-ENPs/40-60 nm increased the affinity of IP in SB soil with a greater effect than 1% Cu-ENPs/25 nm. Thus, both the studied size ranges of Cu-ENPs could favor an accumulation of IP in volcanic ash soils.

摘要

零价铜工程纳米颗粒(Cu-ENPs)通过无意或故意的行为释放到农业土壤中,会改变植物对无机磷(IP)的利用。在本研究中,我们使用吸附-解吸实验来评估粒径为 1%的 Cu-ENPs(25nm 和 40-60nm)对圣巴巴拉(SB)火山灰土壤中 IP 有效性的影响。X 射线衍射结果表明,Cu-ENPs 是由 Cu 金属和 Cu 氧化物(CuO 或/和 CuO)物种的混合物形成的,而比表面积值表明 Cu-ENPs/25nm 可以形成比 Cu-ENPs/40-60nm 更大的团聚颗粒。没有和有 1%Cu-ENPs(25nm 和 40-60nm)的 SB 土壤的动力学 IP 吸附遵循准二级(k=0.45-1.13x10kgmmolmin;r≥0.999,RSS≤0.091)和 Elovich(α=14621.10-3136.20mmolkgmin;r≥0.984,RSS≤69)模型所描述的机制。因此,在所研究的系统中,IP 吸附的速率限制步骤是在非均相表面上的化学吸附。没有 Cu-ENPs 的吸附平衡等温线很好地符合 Freundlich 模型,而有 1%Cu-ENPs(25nm 和 40-60nm)的等温线则最好由 Freundlich 和/或 Langmuir 模型描述。没有 Cu-ENPs 的 IP 相对吸附容量(K)较高,为 1%Cu-ENPs/40-60nm(K=110.41),高于 1%Cu-ENPs/25nm(K=74.40)和 SB 土壤(K=48.17)。本研究表明,在 SB 土壤中存在 1%Cu-ENPs 时,可能的 IP 保留机制是:i)配体交换,ii)静电吸引,和 iii)共沉淀形成。解吸研究表明,1%Cu-ENPs/40-60nm 增加了 IP 在 SB 土壤中的亲和力,其影响大于 1%Cu-ENPs/25nm。因此,研究中所涉及的 Cu-ENPs 粒径范围都可能有利于 IP 在火山灰土壤中的积累。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验