Timm Max E, Avallone Emilio, Timm Malena, Salcher Rolf B, Rudnik Niels, Lenarz Thomas, Schurzig Daniel
Department of Otorhinolaryngology, Hannover Medical School.
Otol Neurotol. 2025 Aug 1;46(7):e234-e242. doi: 10.1097/MAO.0000000000004520. Epub 2025 May 15.
Machine learning models can assist with the selection of electrode arrays required for optimal insertion angles.
Cochlea implantation is a successful therapy in patients with severe to profound hearing loss. The effectiveness of a cochlea implant depends on precise insertion and positioning of electrode array within the cochlea, which is known for its variability in shape and size. Preoperative imaging like CT or MRI plays a significant role in evaluating cochlear anatomy and planning the surgical approach to optimize outcomes.
In this study, preoperative and postoperative CT and CBCT data of 558 cochlea-implant patients were analyzed in terms of the influence of anatomical factors and insertion depth onto the resulting insertion angle.
Machine learning models can predict insertion depths needed for optimal insertion angles, with performance improving by including cochlear dimensions in the models. A simple linear regression using just the insertion depth explained 88% of variability, whereas adding cochlear length or diameter and width further improved predictions up to 94%.
机器学习模型可辅助选择实现最佳插入角度所需的电极阵列。
人工耳蜗植入是治疗重度至极重度听力损失患者的一种成功疗法。人工耳蜗的有效性取决于电极阵列在耳蜗内的精确插入和定位,而耳蜗的形状和大小存在差异。术前成像如CT或MRI在评估耳蜗解剖结构和规划手术方案以优化手术效果方面起着重要作用。
在本研究中,分析了558例人工耳蜗植入患者的术前和术后CT及CBCT数据,以探讨解剖因素和插入深度对最终插入角度的影响。
机器学习模型可预测实现最佳插入角度所需的插入深度,通过在模型中纳入耳蜗尺寸可提高预测性能。仅使用插入深度的简单线性回归解释了88%的变异性,而加入耳蜗长度或直径及宽度可将预测进一步提高至94%。