Suppr超能文献

用于面部重建与识别的稳健稀疏平滑主成分分析

Robust sparse smooth principal component analysis for face reconstruction and recognition.

作者信息

Wang Jing, Xie Xiao, Zhang Li, Li Jian, Cai Hao, Feng Yan

机构信息

School of Computer and Information Technology, Xinyang Normal University, Xinyang, Henan, China.

Henan Key Laboratory of Analysis and Applications of Education Big Data, Xinyang Normal University, Xinyang, Henan, China.

出版信息

PLoS One. 2025 May 27;20(5):e0323281. doi: 10.1371/journal.pone.0323281. eCollection 2025.

Abstract

Existing Robust Sparse Principal Component Analysis (RSPCA) does not incorporate the two-dimensional spatial structure information of images. To address this issue, we introduce a smooth constraint that characterizes the spatial structure information of images into conventional RSPCA, generating a novel algorithm called Robust Sparse Smooth Principal Component Analysis (RSSPCA). The proposed RSSPCA achieves three key objectives simultaneously: robustness through L1-norm optimization, sparsity for feature selection, and smoothness for preserving spatial relationships. Within the Minorization-Maximization (MM) framework, an iterative process is designed to solve the RSSPCA optimization problem, ensuring that a locally optimal solution is achieved. To evaluate the face reconstruction and recognition performance of the proposed algorithm, we conducted comprehensive experiments on six benchmark face databases. Experimental results demonstrate that incorporating robustness and smoothness improves reconstruction performance, while incorporating sparsity and smoothness improves classification performance. Consequently, the proposed RSSPCA algorithm generally outperforms existing algorithms in face reconstruction and recognition. Additionally, visualization of the generalized eigenfaces provides intuitive insights into how sparse and smooth constraints influence the feature extraction process. The data and source code from this study have been made publicly available on the GitHub repository: https://github.com/yuzhounh/RSSPCA.

摘要

现有的鲁棒稀疏主成分分析(RSPCA)未纳入图像的二维空间结构信息。为解决此问题,我们将一种表征图像空间结构信息的平滑约束引入传统的RSPCA中,生成了一种名为鲁棒稀疏平滑主成分分析(RSSPCA)的新算法。所提出的RSSPCA同时实现了三个关键目标:通过L1范数优化实现鲁棒性、通过特征选择实现稀疏性以及通过保留空间关系实现平滑性。在极小化-最大化(MM)框架内,设计了一个迭代过程来求解RSSPCA优化问题,确保获得局部最优解。为评估所提算法的人脸重建和识别性能,我们在六个基准人脸数据库上进行了全面实验。实验结果表明,纳入鲁棒性和平滑性可提高重建性能,而纳入稀疏性和平滑性可提高分类性能。因此,所提出的RSSPCA算法在人脸重建和识别方面通常优于现有算法。此外,广义特征脸的可视化直观地展示了稀疏和平滑约束如何影响特征提取过程。本研究的数据和源代码已在GitHub仓库上公开提供:https://github.com/yuzhounh/RSSPCA。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0993/12111395/08f682484137/pone.0323281.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验